Dorothy Hodgkin (1910–1994) was a crystallographer whose work on the crystal structures of insulin, vitamin B12 and penicillin won her the Nobel Prize in Chemistry in 1964. 2014 being the International Year of Crystallography, I decided recently to re-read the excellent biography, *Dorothy Hodgkin A Life*, by Georgina Ferry, and I firmly recommend it.*

The book charts her progress from a schoolgirl, often left to care for her younger siblings while her academic parents took long research trips abroad, to loving grandmother, referred to as “Dossie”. In between she became the third woman to be awarded a Nobel Prize, received countless other accolades – including being president of the International Union of Crystallography – ran a large and somewhat idiosyncratic research group in Oxford, and travelled extensively to speak about her work. The book gives an excellent insight into her life as a scientist but also gives a sprinkling of the background politics which existed in academia at the time. Also discussed extensively, particularly in relation to the middle decades of the century, were the leanings of many (including Hodgkin’s husband) towards communism, and later towards anti-war movements and nuclear disarmament. She became president of the Pugwash movement, an international organization founded in 1957 that “brings together scholars and public figures to work towards reducing the danger of armed conflict and to seek solutions to global security threats” (source: Wikipedia, June 2014).

It appears that the situation with regard to funding was as difficult during Hodgkin’s time as it is now. Ferry asserts that during Hodgkin’s time in Oxford, she had to overcome the usual hurdles of proving her work was worthy of support (she was an early adopter of ‘big’ facilities, using computers in her crystal-structure work). She also had to overcome many hurdles associated with her gender, including attendance at some in-college seminars, male-only domains, even when it was her work that was being presented!

I can’t help feeling that a more Hodgkin-like approach would sometimes serve us better.

Earlier this year the Mineralogical Society received an application for a student bursary (travel grant) from an Iranian student. His application, like many we receive, was from a young scientist keen to tell other scientists about his work in a professional scientific forum, to learn further about his craft from more senior scientists and to receive feedback about his work. The Society granted him some money which would help him to travel from Tehran to Bulgaria for the SGEM 2014 (www.sgem.org) conference. Following the award, he discovered that scientists from Iran were not welcome at the event. Society staff undertook to contact the conference organizers but several attempts went unanswered. Fortunately we were able to secure his attendance at another relevant conference (Mid-European Clay Conference) taking place in Dresden in September, but not until another hurdle was overcome: our Society’s bank would not transfer the funds to any bank in Iran.

Though I understand (of course) the reason for economic sanctions and other such restrictions, I can’t help feeling that a more Hodgkin-like approach would sometimes serve us better. Many things have changed which have helped our Chinese colleagues (for example) to come to the fore in science, but it is certain that the links built by Hodgkin and others contributed significantly. There is much that scientists and our learned societies can do to help in this regard.

Kevin Murphy, Executive Director
Mineralogical Society of Great Britain and Ireland
Solutions for Elemental & Isotopic Microanalysis in Geosciences

IMS 1280-HR, IMS 7f-GEO, NanoSIMS 50L

The world leading SIMS for geo & cosmochemists

IMS 1280-HR Ultra High Sensitivity multicollection SIMS: the state-of-the-art instrument for stable isotopes, U-Pb geochronology, nuclear particle analysis...

IMS 7f-GEO monocollection SIMS: analysis and mapping of Rare Earth Elements (REE) and trace elements down to sub-micron scale resolution.

NanoSIMS 50L ion microprobe for high sensitivity, high lateral resolution analyses.

In-situ carbon isotope signature of natural diamond.

Internal reproducibility for each point < 0.2 ‰.

Data obtained on a CAMECA IMS 1280.

Courtesy of Edinburgh University, UK.

SXFive / SXFiveFE

CAMECA’s fifth generation Electron Microprobe

Quantitative microanalysis & X-ray mapping at sub-micron spatial resolution. Benchmark detection limits for trace and minor elements.

NEW!

LEAP® 5000

CAMECA’s newest, cutting edge atom probe!

Atom Probe Tomography (APT) is a powerful and promising technique for the nanoscale isotopic and elemental analysis of geological and extraterrestrial materials.

One of the hundreds of clusters analyzed from a zircon crystal from the Jack Hills of Western Australia showing the 3D distribution of ^{89}Y and radiogenic ^{206}Pb and ^{207}Pb atoms at the nanometer scale. Analysis of the data confirm the 4.4 Ga age and a heating event that occurred ~1 Ga after its formation.