2013 IMPACT FACTOR = 4.5

Elements’ impact factor climbed from 3.156 in 2012 to 4.5 in 2013. As a reminder the 2013 impact factor measures the number of citations articles published in 2011 and 2012 received during 2013. Thus, Elements’ articles are well cited, oftentimes in journals outside the mineralogy–geochemistry–petrology community. The 335 articles published in Elements up to the end of 2013 received 1555 citations in 2013, giving an average of 4.6 citations per article.

The issues that have been most cited since the time of publication are:

V3n1 – Zircon (534 citations up to June 2014)
v2n2 – Arsenic (368)
V4n5 – CO2 Sequestration (275)
V1n5 – Large Igneous Provinces (270)
V2n6 – The Nuclear Fuel Cycle (240)

Many thanks go to Kevin Murphy who oversaw Elements’ presence at the recent IMA meeting in Johannesburg, South Africa, and to everyone who spent time at the booth. Kevin reports the following from his experience:

“The Elements societies’ booth at IMA was, as the name suggests, a joint affair and staffed by a range of representatives from several of the societies involved. One of the good things about the joint effort was that there was much of interest to attract delegates to the booth.

A large selection of back issues of Elements on the table prompted lots of comments, from “ooh, that’s my favourite one” to “I’d really like to get this magazine for myself.” Also on display were sample copies of Geochemical Perspectives, Mineralogical Magazine, Clay Minerals, Clays and Clay Minerals, the CMS Workshop Lecture Series, the EMU Notes in Mineralogy series and the Reviews in Mineralogy & Geochemistry series. The booth was busy throughout the five days and especially so at break times. Elements representatives visited all of the other display stands to talk about possible advertising in Elements and to thank those who already support our magazine by doing so. At the end of the conference, left-over display material was donated to the relatively new University of Limpopo – they have gone to a good home.”

Pierrette Tremblay, Executive Editor

REFERENCES


EDITORIAL Cont’d from page 323

For Earth scientists, particularly those investigating questions in field settings, modern or ancient events can never be identically repeated, much less replicated. Whether one researches long-term processes or discrete events, such as storms, earthquakes, and eruptions, the Earth does not comply! Thus, true replication cannot be achieved. Our approach must be to collect data using well-designed protocols that include sufficient replications for meaningful statistical analysis and a detailed log of accompanying observations.

While there is no single way to conduct an experiment, a good place to begin is a thoughtful assessment of whether a research question should be tackled with an exploratory or hypothesis-based approach. Earth environments and the systems that we study are so complex that there always seem to be yet- unrecognized variables. Thus, I have come to think that much of what we do in the Earth sciences is exploratory, despite our best intentions to strictly test hypotheses. By accepting the limitations that each type of research can yield, we begin with a stronger framework for interpreting and predicting without overstatement.

At the end of the day, this must be a community-wide endeavor. The responsibility is shared governance with other researchers, reviewers, funding agencies, editors, and publishers. This is already underway. For example, journal editors are contributing to reproducibility by allowing more space for authors to describe their methods, by providing online repositories, and by selecting articles that provide an unusually excellent treatment of the data (Russell 2013).

The benefits are many. First, we must invest limited time and research money with utmost care. Second, the public nature of the reproducibility discussion affirms the strength of our scientific system because it is there for all to see. It upholds the validity and legitimacy of the scientific method. This is particularly important during an era when scientific findings and recommendations are sometimes treated with cynicism. Iron-clad data collection, replication, error analysis, and documentation are critical. We must be mindful when making claims of findings and their implications. In the long run, our diligence will build, not erode, public confidence.

Patricia M. Dove, Virginia Tech Principal Editor
Simultaneously visualize and quantify unique petrographic information

Answer critical questions on sample mineralogy, grain size distribution, and chemical composition, while gaining new insight into petrologic processes with FEI’s correlative workflows for geoscience.

Learn more at: FEI.com/geo-elements