Thematic Articles

Reading the Isotopic Code of Heavy Elements

By and | December, 2021

The isotopic variability of the elements in our planet and Solar System is the end result of a complex mixture of processes, including variable production of isotopes in stars, ingrowth of daughter nuclides due to decay of radioactive parents, and selective incorporation of isotopes into solids, liquids, or gases as a function of their mass and/or nuclear volume. Interpreting the isotopic imprints that planetary formation and evolution have left in the rock and mineral record requires not only precise and accurate measurements but also an understanding of the drivers behind isotopic variability. Here, we introduce fundamental concepts needed to “read” the isotopic code, with particular emphasis on heavy stable isotope systems.

Read More

Carbonatites and Global Tectonics

By and | October, 2021

Carbonatites have formed for at least the past three billion years. But over the past 700 My the incidence of carbonatites have significantly increased. We compile an updated list of 609 carbonatite occurrences and plot 387 of known age on plate tectonic reconstructions. Plate reconstructions from Devonian to present show that 75% of carbonatites are emplaced within 600 km of craton edges. Carbonatites are also associated with large igneous provinces, orogenies, and rift zones, suggesting that carbonatite magmatism is restricted to discrete geotectonic environments that can overlap in space and time. Temporal constraints indicate carbonatites and related magmas may form an ephemeral but significant flux of carbon between the mantle and atmosphere.

Read More

The Distinctive Mineralogy of Carbonatites

By , and | October, 2021

The mineralogy of carbonatites reflects both the diversity of the sources of their parent magmas and their unusual chemistry. Carbonatites contain diverse suites of both primary magmatic minerals and later hydrothermal products. We present a summary of the variety of minerals found in carbonatites, and note the economic importance of some of them, particularly those that are major sources of “critical elements”, such as Nb and rare earth elements (REEs), which are essential for modern technological applications. Selected mineral groups are then discussed in detail: the REE carbonates, the alkali-rich ephemeral minerals that are rarely preserved but that may be important in the petrogenesis of carbonatites and their metasomatic haloes in adjacent rocks, and the Nb-rich oxides of the pyrochlore supergroup.

Read More

Formation of Rare Earth Deposits in Carbonatites

By , and | October, 2021

Carbonatites and related rocks are the premier source for light rare earth element (LREE) deposits. Here, we outline an ore formation model for LREE-mineralised carbonatites, reconciling field and petrological observations with recent experimental and isotopic advances. The LREEs can strongly partition to carbonatite melts, which are either directly mantle-derived or immiscible from silicate melts. As carbonatite melts evolve, alkalis and LREEs concentrate in the residual melt due to their incompatibility in early crystallising minerals. In most carbonatites, additional fractionation of calcite or ferroan dolomite leads to evolution of the residual liquid into a mobile alkaline “brine-melt” from which primary alkali REE carbonates can form. These primary carbonates are rarely preserved owing to dissolution by later fluids, and are replaced in-situ by monazite and alkali-free REE-(fluor)carbonates.

Read More

Carbonatitic Melts and Their Role in Diamond Formation in the Deep Earth

By , and | October, 2021

Carbonatitic high-density fluids and carbonate mineral inclusions in ­lithospheric and sub-lithospheric diamonds reveal comparable compositions to crustal carbonatites and, thus, support the presence of carbonatitic melts to depths of at least the mantle transition zone (~410–660 km depth). Diamonds and high pressure–high temperature (HP–HT) experiments confirm the stability of lower mantle carbonates. Experiments also show that carbonate melts have extremely low viscosity in the upper mantle. Hence, carbonatitic melts may participate in the deep (mantle) carbon cycle and be highly effective metasomatic agents. Deep carbon in the upper mantle can be mobilized by metasomatic carbonatitic melts, which may have become increasingly volumetrically significant since the onset of carbonate subduction (~3 Ga) to the present day.

Read More

Evolution of Carbonatite Magmas in the Upper Mantle and Crust

By , and | October, 2021

Carbonatites are the most silica-poor magmas known and are amongst Earth’s most enigmatic igneous rocks. They crystallise to rocks dominated by the carbonate minerals calcite and dolomite. We review models for carbonatite petrogenesis, including direct partial melting of mantle lithologies, exsolution from silica-undersaturated alkali silicate melts, or direct fractionation of carbonated silicate melts to carbonate-rich residual melts. We also briefly discuss carbonatite–mantle wall-rock reactions and other processes at mid- to upper crustal depths, including fenitisation, overprinting by carbohydrothermal fluids, and reaction between carbonatite melt and crustal lithologies.

Read More

Carbonatites: Contrasting, Complex, and Controversial

By , , and | October, 2021

Carbonatites are unique, enigmatic, and controversial rocks directly sourced from, or evolved from, mantle melts. Mineral proportions and chemical compositions of carbonatites are highly variable and depend on a wide range of processes: melt generation, liquid immiscibility, fractional crystallization, and post-magmatic alteration. Observations of plutonic carbonatites and their surrounding metasomatic rocks (fenites) suggest that carbonatite intrusions and volcanic rocks do not fully represent the true compositions of the parental carbonatite melts and fluids. Carbonatites are enriched in rare elements, such as niobium and rare earths, and may host deposits of these elements. Carbonatites are also important for understanding the carbon cycle and mantle evolution.

Read More

Life’s Origins and the Search for Life on Rocky Exoplanets

By , and | August, 2021

The study of the origin(s) of life on Earth and the search for life on other planets are closely linked. Prebiotic chemical scenarios can help prioritize target planets for the search for life (as we know it) and can provide informative prior probabilities to help us assess the likelihood that particular spectroscopic features are evidence of life. The prerequisites for origins scenarios themselves predict characteristic spectral signatures. The interplay between origins research and the search for extraterrestrial life starts with laboratory work to guide exploration within our own Solar System, which will then inform future exoplanet observations and laboratory research. Exoplanet research will, in turn, provide statistical context to conclusions about the nature and origins of life.

Read More

The Air Over There: Exploring Exoplanet Atmospheres

By and | August, 2021

T he atmospheric composition for a rocky exoplanet will depend strongly on the planet’s bulk composition and orbital position. Nontraditional gases may be present in the atmospheres of exceptionally hot planets. Atmospheres of more clement planets will depend on the abundance of volatiles acquired during planet formation and atmospheric removal processes, including escape, condensation, and reaction with the surface. To date, observations of exoplanet atmospheres have focused on giant planets, but future space- and ground-based observatories will revolutionize the precision and spectral resolution with which we can probe an exoplanet’s atmosphere. This article consolidates lessons learned from the study of giant planet atmospheres, and points to the observations and challenges on the horizon for terrestrial planets.

Read More

Constraining the Climates of Rocky Exoplanets

By , , and | August, 2021

Numerical climate models originally developed for Earth have been adapted to study exoplanetary climates. This is allowing us to investigate the range of properties that might affect an exoplanet’s climate. The recent discovery, and upcoming characterization, of cosmically close rocky exoplanets opens the door toward understanding the processes that shape planetary climates, maybe also leading to insight into the persistent habitability of Earth itself. We summarize the recent advances made in understanding the climate of rocky exoplanets, including their atmospheric structure, chemistry, evolution, and atmospheric and oceanic circulation. We describe current and upcoming astronomical observations that will constrain the climate of rocky exoplanets and describe how modeling tools will both inform and interpret future observations.

Read More

The Diversity of Exoplanets: From Interior Dynamics to Surface Expressions

By and | August, 2021

The coupled interior–atmosphere system of terrestrial exoplanets remains poorly understood. Exoplanets show a wide variety of sizes, densities, surface temperatures, and interior structures, with important knock-on effects for this coupled system. Many exoplanets are predicted to have a “stagnant lid” at the surface, with a rigid stationary crust, sluggish mantle convection, and only minor volcanism. However, if exoplanets have Earth-like plate tectonics, which involves several discrete, slowly moving plates and vigorous tectono-magmatic activity, then this may be critical for planetary habitability and have implications for the development (and evolution) of life in the galaxy. Here, we summarize our current knowledge of coupled planetary dynamics in the context of exoplanet diversity.

Read More

Exogeology from Polluted White Dwarfs

By and | August, 2021

It is difficult to study the interiors of terrestrial planets in the Solar System and the problem is magnified for distant exoplanets. However, sometimes nature is helpful. Some planetary bodies are torn to fragments and consumed by the strong gravity close to the descendants of Sun-like stars, white dwarfs. We can deduce the general composition of the planet when we observe the spectroscopic signature of the white dwarf. Most planetary fragments that fall into white dwarfs appear to be rocky with a variable fraction of associated ice and carbon. These white dwarf planetary systems provide a unique opportunity to study the geology of exoplanetary systems.

Read More