Nanoscale Structure and Dynamics in Geochemical Systems

Neutron scattering is a powerful tool to elucidate the structure and dynamics of systems that are important to geochemists, including ion association in complex aqueous solutions, solvent-exchange reactions at mineral–water interfaces, and reaction and transport of fluids in nanoporous materials. This article focusses on three techniques: neutron diffraction, which can reveal the atomic-level structure of aqueous solutions and solids; quasi-elastic neutron scattering, which measures the diffusional dynamics at mineral–water interfaces; and small-angle neutron scattering, which can show how properties of nanoporous systems change during gas, liquid, and solute imbibition and reaction. The usefulness and applicability of the experimental results are extended by rigorous comparison to computational simulations.

Read More

Neutrons “101” – A Primer for Earth Scientists

The fundamental properties of the neutron make it a powerful tool for Earth science investigations because neutrons provide information that cannot be obtained by any other research method. This is because neutrons are magnetically sensitive, nondestructive, and sensitive to the lighter elements, such as hydrogen. They provide a unique, nondestructive method for obtaining information ranging from Ångstrom-scale atomic structures (and related motions) to micron-scale material strain, stress, and texture, and even up to meso-scale porous matrices and defects in materials and functional components. In this article, we introduce neutrons and their unique properties, neutron production and sources, and provide an overview of the different types of neutron methods applicable to the Earth sciences.

Read More