Skip to content
Elements Covers

Posts by Tamsin A. Mather

Santorini Volcano and its Plumbing System

Santorini Volcano is an outstanding natural laboratory for studying arc volcanism, having had twelve Plinian eruptions over the last 350,000 years, at least four of which caused caldera collapse. Periods between Plinian eruptions are characterized by intra-caldera edifice construction and lower intensity explosive activity. The Plinian eruptions are fed from magma reservoirs at 4–8 km depth that are assembled over several centuries prior to eruption by the arrival of high-flux magma pulses from deeper in the sub-caldera reservoir. Unrest in 2011–2012 involved intrusion of two magma pulses at about 4 km depth, suggesting that the behaviour of the modern-day volcano is similar to the behaviour of the volcano prior to Plinian eruptions. Emerging understanding of Santorini’s plumbing system will enable better risk mitigation at this highly hazardous volcano.

Read More

Volcanic Sulfides and Outgassing

Sulfides are a major potential repository for magmatic metals and sulfur. In relatively reduced magmas, there may be a dynamic interplay between sulfide liquids and magma degassing as magmas ascend/erupt. Sulfide-bubble aggregates may segregate to shallow levels. Exsolved fluids may oxidize sulfides to produce SO2 gas and metals, which can vent to the atmosphere with chalcophile metal ratios reflecting those in their parent sulfide liquids. Sulfide breakdown and/or sequestration timing and balance define the role of sulfides in both ore formation and the environmental impacts of volcanic eruptions, including during the evolution of large igneous provinces, which are key periods of heightened volcanism during Earth history.

Read More
Scroll To Top