Elements Covers

ELEMENTS Toolkit

Proper Terminology in Analytical Geochemistry

Success in science has basically two components: (1) what one might call the “research component,” involving the testing of a hypothesis or the acquisition of a unique data set that provides insight into the workings of nature; (2) the “communications component”, which involves the dissemination and archiving of the knowledge that has been won. For me, the importance of this second, communications, aspect within the scientific process seems all too often underappreciated. Problems that many of us have certainly encountered in the geochemical literature range from incomplete descriptions of an analytical method, to the use of ambiguous jargon, to authors simply using the wrong terminology, etc.

Read More

Proficiency Testing: Knowing How Far You Can Trust Your Data

Proficiency testing (PT) is a cornerstone of good analytical practice, providing one of the few means of really testing the quality of a lab’s analytical output. Participation in a routine PT scheme can form part of lab accreditation, and for many industrial applications (e.g. ore grade determinations for the mining industry) it is often expected that mineral assay laboratories track their PT results. As an example, National Instrument 43-101, which is Canada’s “Standards of Disclosure for Mineral Projects”, requires the written disclosure of the methods used to verify quantitative data related to new mineral prospects seeking public funding. Hence, proficiency testing has become a de facto component of ore grade assessment whenever a mining company applies for listing on the Toronto stock exchange. Clearly, proficiency testing is not only of research importance but also plays a central role in the world’s mining industry.

Read More

Time-of-flight Mass Spectrometry: A New Tool for Laser Ablation Analyses

I have worked in the field of mass spectrometry for some 30 years now, and I have long been interested in tracking those technical developments that might offer new options for the analytical geochemist. When laser ablation was selected as the topic for the October 2016 issue of Elements, I wanted to devote this Toolkit contribution to some emerging technology that might significantly advance mass spectrometry’s contribution to laser ablation analyses. After a bit of research, and having contacted some of the leading names in the field of laser ablation, I chose to highlight the time-of-flight (TOF) method as a new analytical strategy with promising new opportunities.

Read More

Optical Profilometry

Understanding the fine-scale surface structure of a material can be key for many applications in the Earth sciences. For example, characterizing grain abrasion in a clastic sediment or describing the morphology of surfaces produced during a hydrothermal reaction experiment. A common approach to such imaging tasks is…

Read More

The New Earth and Environmental Nanoscience and Technology Centers Sponsored by NSF

Nanoscience, and the technology that stems from it (that is, nanoscience and technology), constitutes one of the great revolutions that originated in the twentieth century. Development in this field is crucial because it is central to some of the most vital issues of the twenty-first century, including safe water, mineral and energy resource development, local/regional/global contaminant issues (including disease transmission), and global climate change.

Read More