Biogeochemical Controls on the Redox Evolution of Earth’s Oceans and Atmosphere

Download Article (PDF) June 2020 Issue Table of Contents Editorial A Symphony of ElectronsFrom the EditorsMeet the AuthorsThematic ArticlesSociety News Thermodynamics in Earth and Planetary Sciences 2nd Ed.Book ReviewCalendarCosmoElements Primitive Meteorite Contains Cometary SurpriseDigital Edition The redox state of Earth’s atmosphere has undergone a dramatic shift over geologic time from reducing to strongly oxidizing, and…

Read More

Electron Transfer Drives Metal Cycling in the Critical Zone

Electron transfer in the critical zone is driven by biotic and abiotic mechanisms and controls the fate of inorganic and organic contaminants, whether redox-sensitive or not. In these environments, Fe- and Mn-bearing minerals, as well as organic matter, are key compounds. They interact with each other and constitute important electron shuttles. As a result, not only their solubility but also their structure controls the mobility of many essential and toxic elements. In addition, microorganisms that form hot spots and are widespread in environmental systems are also primordial players in electron transfer processes by acting as a catalyst between an electron donor and an acceptor, and through their contaminant detoxification metabolism.

Read More

Volcanic and Geothermal Redox Engines

The redox (reduction–oxidation) potential is an essential variable that controls the chemical reactions of fluids in magmatic and associated geothermal systems. However, the evolution of the redox potential is difficult to trace from a magma’s source at depth to the surface. The key is knowing that electron transfer is the twin face of the acid–base exchanges that drive charge transfer in the many reactions that occur in multiphase and chemically complex systems. The deduced redox reactivity can reveal many features about the evolution of a system’s composition and the external factors that control it. As such, redox potential analysis is an important geochemical tool by which to monitor volcanoes and to explore geothermal systems.

Read More

Magmas are the Largest Repositories and Carriers of Earth’s Redox Processes

Magma is the most important chemical transport agent throughout our planet. This paper provides an overview of the interplay between magma redox, major element chemistry, and crystal and volatile content, and of the influence of redox on the factors that drive igneous system dynamics. Given the almost infinite combinations of temperature, pressure, and chemical compositions relevant to igneous petrology, we focus on the concepts and methods that redox geochemistry provides to understand magma formation, ascent, evolution and crystallization. Particular attention is paid to the strong and complex interplay between melt structure and chemistry, and to the influence that redox conditions have on melt properties, crystallization mechanisms and the solubility of volatile components.

Read More

Redox Processes in Early Earth Accretion and in Terrestrial Bodies

The Earth is a unique rocky planet with liquid water at the surface and an oxygen-rich atmosphere, consequences of its particular accretion history. The earliest accreting bodies were small and could be either differentiated and undifferentiated; later larger bodies had formed cores and mantles with distinct properties. In addition, there may have been an overall trend of early reduced and later oxidized material accreting to form the Earth. This paper provides an overview—based on natural materials in our Earthbound sample collections, experimental studies on those samples, and calculations and numerical simulations of differentiation processes—of planetary accretion, core–mantle equilibration, mantle redox processes, and redox variations in Earth, Mars, and other terrestrial bodies.

Read More

The Redox Boundaries of Earth’s Interior

The interior of the Earth is an important reservoir for elements that are chemically bound in minerals, melts, and gases. Analyses of the proportions of redox-sensitive elements in ancient and contemporary natural rocks provide information on the temporal redox evolution of our planet. Natural inclusions trapped in diamonds, xenoliths, and erupted magmas provide unique windows into the redox conditions of the deep Earth, and reveal evidence for heterogeneities in the mantle’s oxidation state. By examining the natural rock record, we assess how redox boundaries in the deep Earth have controlled elemental cycling and what effects these boundaries have had on the temporal and chemical evolution of oxygen fugacity in the Earth’s interior and atmosphere.

Read More

Earth’s Electrodes

The oxidation–reduction (‘redox’) state is an important intensive property of any geologic system and is typically measured (and reported) as either the redox potential (Eh) or the oxygen fugacity (fO2). These two concepts cover the whole spectrum of geologic systems: from low-temperature aqueous and sedimentary systems to high-temperature rock-forming environments. The redox state determines the speciation of a fluid phase and exercises fundamental controls on phase relations and geochemical evolution. Here, we review the concepts that underpin the redox state and outline a framework for describing and quantifying the concept of the oxidation state.

Read More

New Trends in Raman Spectroscopy: From High-Resolution Geochemistry to Planetary Exploration

This article reviews nonconventional Raman spectroscopy techniques and discusses present and future applications of these techniques in the Earth and planetary sciences. Time-resolved spectroscopy opens new ways to limit or exploit luminescence effects, whereas techniques based on coherent anti-Stokes Raman scattering (CARS) or surface-enhanced Raman spectroscopy (SERS) allow the Raman signal to be considerably enhanced even down to very high spatial resolutions. In addition, compact portable Raman spectrometers are now routinely used out of the laboratory and are even integrated to two rovers going to Mars in the near future.

Read More

Geoscience Meets Biology: Raman Spectroscopy in Geobiology and Biomineralization

Raman spectroscopy is widely applied in metamorphic petrology and offers many opportunities for geological and tectonic research. Minimal sample preparation preserves sample integrity and microtextural information, while use with confocal microscopes allows spatial resolution down to the micrometer level. Raman spectroscopy clearly distinguishes mineral polymorphs, providing crucial constraints on metamorphic conditions, particularly ultrahigh-pressure conditions. Raman spectroscopy can also be used to monitor the structure of carbonaceous material in metamorphic rocks. Changes in structure are temperature-sensitive, so Raman spectroscopy of carbonaceous material is widely used for thermometry. Raman spectroscopy can also detect and quantify strain in micro-inclusions, offering new barometers that can be applied to understand metamorphic and tectonic processes without any assumptions about chemical equilibrium.

Read More

Applications of Raman Spectroscopy in Metamorphic Petrology and Tectonics

Raman spectroscopy is widely applied in metamorphic petrology and offers many opportunities for geological and tectonic research. Minimal sample preparation preserves sample integrity and microtextural information, while use with confocal microscopes allows spatial resolution down to the micrometer level. Raman spectroscopy clearly distinguishes mineral polymorphs, providing crucial constraints on metamorphic conditions, particularly ultrahigh-pressure conditions. Raman spectroscopy can also be used to monitor the structure of carbonaceous material in metamorphic rocks. Changes in structure are temperature-sensitive, so Raman spectroscopy of carbonaceous material is widely used for thermometry. Raman spectroscopy can also detect and quantify strain in micro-inclusions, offering new barometers that can be applied to understand metamorphic and tectonic processes without any assumptions about chemical equilibrium.

Read More