Elements Covers

Thematic Articles

Palaeoweathering: How Do Weathering Rates Vary with Climate?

A feedback between Earth surface weathering and climate is thought to be fundamental in maintaining Earth’s habitability over long timescales, but investigating this control in the modern world is difficult. The geologic record of cycles between glacial and interglacial conditions of the last 2.6 million years allows us to study weathering feedback in action. A suite of mineral, element and isotope proxies have been applied to address how weathering rates have varied over glacial cycles. Despite evidence for substantial local changes, the emerging answer at a global scale seems to be, “not very much”.

Read More

Combating Climate Change Through Enhanced Weathering of Agricultural Soils

Rising levels of atmospheric carbon dioxide (CO2) are driving increases in global temperatures. Enhanced weathering of silicate rocks is a CO2 removal technology that could help mitigate anthropogenic climate change. Enhanced weathering adds powdered silicate rock to agricultural lands, accelerating natural chemical weathering, and is expected to rapidly draw down atmospheric CO2. However, differences between enhanced and natural weathering result in significant uncertainties about its potential efficacy. This article summarizes the research into enhanced weathering and the uncertainties of enhanced weathering due to the key differences with natural weathering, as well as future research directions.

Read More

Breaking it Down: Mechanical Processes in the Weathering Engine

Since land plants emerged from swampy coastlines over 400 million years ago, they have played a fundamental role in shaping the Earth system. Roots and associated fungi increase rock weathering rates, providing access to nutrients, while altering atmospheric CO2. As soils weather, the dissolution of primary minerals forces plants to rely on recycling and atmospheric deposition of rock-derived nutrients. Thus, for many terrestrial ecosystems, weathering ultimately constrains primary production (carbon uptake) and decomposition (carbon loss). These constraints are most acute in agricultural systems, which rely on mined fertilizer rather than the recycling of organic material to maintain production. Humans now mine similar amounts of some elements as weather out of rocks globally. This increase in supply has myriad environmental consequences.

Read More

How Plants Enhance Weathering and How Weathering is Important to Plants

Since land plants emerged from swampy coastlines over 400 million years ago, they have played a fundamental role in shaping the Earth system. Roots and associated fungi increase rock weathering rates, providing access to nutrients, while altering atmospheric CO2. As soils weather, the dissolution of primary minerals forces plants to rely on recycling and atmospheric deposition of rock-derived nutrients. Thus, for many terrestrial ecosystems, weathering ultimately constrains primary production (carbon uptake) and decomposition (carbon loss). These constraints are most acute in agricultural systems, which rely on mined fertilizer rather than the recycling of organic material to maintain production. Humans now mine similar amounts of some elements as weather out of rocks globally. This increase in supply has myriad environmental consequences.

Read More

The Goldilocks Planet? How Silicate Weathering Maintains Earth “Just Right”

Earth’s climate is buffered over long timescales by a negative feedback between atmospheric CO2 level and surface temperature. The rate of silicate weathering slows as the climate cools, causing CO2 to increase and warming the surface through the greenhouse effect. This buffering system has kept liquid water stable at Earth’s surface, except perhaps during certain ‘Snowball Earth’ episodes at the beginning and end of the Proterozoic. A similar stabilizing feedback is predicted to occur on rocky planets orbiting other stars if they share analogous properties with Earth, most importantly an adequate (but not overly large) abundance of water and a mechanism for recycling carbonate rocks into CO2. Periodic oscillations between globally glaciated and ice-free climates may occur on planets with weak stellar insolation and/or slow volcanic outgassing rates. Most silicate weathering is thought to occur on the continents today, but seafloor weathering (and reverse weathering) may have been equally important earlier in Earth’s history.

Read More

The Central Role of Weathering in the Geosciences

Weathering is the chemical and physical alteration of rock at the surface of the Earth, but its importance is felt well beyond the rock itself. The repercussions of weathering echo throughout the Earth sciences, from ecology to climatology, from geomorphology to geochemistry. This article outlines how weathering interacts with various geoscience disciplines across a huge range of scales, both spatial and temporal. It traces the evolution of scientific thinking about weathering and man’s impact on weathering itself—for better and for worse. Future computational, conceptual and methodological advances are set to cement weathering’s status as a central process in the Earth sciences.

Read More

The Kos–Nisyros–Yali Volcanic Field

The Kos–Nisyros–Yali volcanic field has produced a range of volcanic products over the last 3 million years. Volumetrically, silicic magma dominates, and activity includes one of the largest known explosive eruptions of the Aegean arc, the >60 km3 (dense-rock equivalent), 161 ka rhyolitic Kos Plateau Tuff. The Kos–Nisyros–Yali volcanic field is situated within an area of active crustal extension, which has greatly influenced magmatic processes and landscape development in the region. Recent seismic unrest, surface deformation and intense geothermal activity indicate that the system remains active, particularly around the Nisyros and Yali edifices. These signs of magmatic activity, together with the fact that the most recent eruptions have become increasingly silicic, would justify detailed monitoring of the area.

Read More

The Late Bronze Age Eruption of Santorini Volcano and Its Impact on the Ancient Mediterranean World

The Late Bronze Age eruption of Santorini occurred 110 km north of Minoan Crete (Greece). Having discharged between 48 and 86 km3 of magma and rock debris, the eruption ranks as one of the largest of the last 10,000 years. On Santorini, it buried the affluent trading port of Akrotiri. Modern volcanological research has reconstructed the eruption and its regional impacts in detail, while fifty years of archaeological excavations have unraveled the events experienced by the inhabitants of Akrotiri during the months that led up to the eruption. Findings do not favour a direct relationship between the eruption and the decline of the Minoan civilization, although tsunamis and atmospheric effects may have weakened Cretan society through impacts on shipping, trade and agriculture.

Read More

Santorini Volcano and its Plumbing System

Santorini Volcano is an outstanding natural laboratory for studying arc volcanism, having had twelve Plinian eruptions over the last 350,000 years, at least four of which caused caldera collapse. Periods between Plinian eruptions are characterized by intra-caldera edifice construction and lower intensity explosive activity. The Plinian eruptions are fed from magma reservoirs at 4–8 km depth that are assembled over several centuries prior to eruption by the arrival of high-flux magma pulses from deeper in the sub-caldera reservoir. Unrest in 2011–2012 involved intrusion of two magma pulses at about 4 km depth, suggesting that the behaviour of the modern-day volcano is similar to the behaviour of the volcano prior to Plinian eruptions. Emerging understanding of Santorini’s plumbing system will enable better risk mitigation at this highly hazardous volcano.

Read More

The Christiana–Santorini–Kolumbo Volcanic Field

The Christiana–Santorini–Kolumbo volcanic field in the South Aegean Sea (Greece) is one of the most important in Europe, having produced more than 100 explosive eruptions in the last 400,000 years. Its volcanic centers include the extinct Christiana Volcano and associated seamounts, Santorini caldera with its intracaldera Kameni Volcano, Kolumbo Volcano, and 24 other submarine cones of the Kolumbo chain. Earthquakes, volcanic eruptions, submarine mass wasting, neotectonics and gas releases from these centers pose significant geohazards to human populations and infrastructures of the Eastern Mediterranean region. Defining the geological processes and structures that contribute to these geohazards will provide an important framework to guide future monitoring and research activities aimed at hazard mitigation.

Read More