At first glance, nano and Earth seem about as far apart as one can imagine. Nanogeoscience seems to be a word connecting opposites. More specifically, a nanometer relative to a meter is the same as a marble relative to the size of this planet. But to a growing number of Earth scientists, the term nanogeoscience makes perfect sense. Nanomaterials can be manufactured, but they are also naturally occurring. In fact, we now think that nanomaterials are essentially ubiquitous in nature. Importantly, nanomaterials often have dramatically different properties from those of the same material with larger grain size. By understanding these property changes as a function of size and shape in the nanorange, we will acquire another perspective from which to view Earth chemistry.
This issue of Elements explores our current knowledge of nanogeoscience using numerous examples from the “critical zone” of the Earth, as well as from the oceans and the atmosphere. Important insights into local, regional, and even global phenomena await our understanding of processes that are relevant at the smallest scales of Earth science studies. Nanogeoscience is at a relatively early stage of development. Therefore, large gaps in our knowledge in this area exist, making the next few years and decades an exciting time of new realizations, discovery, and change. This issue of Elements will help promote and energize this field in its early adolescence.