Does Earth Still Offer Discoveries?

Imagine a geoscientist who begins his career as a mine surveyor but who quickly realizes that this was too small a field for him. So, he decides to take field trips, which last many years, to remote parts of the Earth. What our geoscientist discovers includes nothing less than the interactions between topography and climate, the alignment of volcanoes along zones of earthquake activity and at great depth, and three-quarters of all known plant species. Returning home, our geoscientist does not rest. Instead, he lets the world know of his spectacular discoveries. He becomes a prolific writer who publishes an immense number of articles and books, all the while discussing the implications of his findings in a dozen or more detailed letters a day with colleagues around the world.

Read More

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models

Beneath our feet is a fascinating world of flowing water, cosmopolitan microbes, and complex mineral assemblages. Yet we see none of it from above. Our quest to investigate these complex subsurface interactions has led to the development of reactive transport models. These are computer algorithms that allow us to explore, in a virtual way, the natural dynamics of Earth’s systems and our anthropogenic impact on those systems. Here, we explain the concepts behind reactive transport models—which include the transport of aqueous species and the descriptions of biogeochemical reactions involving solutes, surfaces and microorganisms—and introduce to reactive transport applications in terrestrial and marine environments.

Read More