Posts Tagged ‘August 2016’
Selecting a Site for a Radioactive Waste Repository: A Historical Analysis
Every nation that has adopted a strategy for the long-term management of its high-level radioactive waste (HLW) and spent nuclear fuel (SF) has opted for disposal in a deep-mined, geological repository. Identifying a site for such a facility has proven to be a technical and social challenge. Over the last 50 years, both challenges have been met (at least so far) in only three out of the ten countries that have tried. This historical experience makes clear how important it is to gain social acceptability for a site’s selection: such acceptability is a prerequisite for policy making in democratic societies. The inability to gain social acceptability has proven to be the Achilles’ heel for most efforts to choose a repository site.
Read MoreGeological Disposal of Nuclear Waste in Tuff: Yucca Mountain (USA)
For more than three decades, the US Department of Energy has investigated the potential for permanent disposal of high-level radioactive waste and spent nuclear fuel in a deep-mined repository at Yucca Mountain, Nevada (USA). A detailed license application submitted to the US Nuclear Regulatory Commission in 2008 provides full documentation of the case for permanent disposal of nuclear waste in tuff. The aridity of the site and great depth to the water table provide a disposal environment and a design concept unique among deep-mined repositories currently or previously proposed worldwide.
Read MoreSalt as a Host Rock for the Geological Repository for Nuclear Waste
Rock salt formations can make suitable hosts for the disposal of high-level radioactive wastes. The performance of salt as a host rock for a repository over million-year timescales has been investigated for the potential site for a geological repository at Gorleben in Germany. The main threat towards the stability of a natural salt barrier is its high solubility. Hence, prevention of water access into the waste emplacement area has to be ensured. Geological factors to be assessed in this context include diapirism, the formation of (future) glacial channels, the impact of loads and stresses imposed by glaciers, hydrocarbons, and the local hydrogeology. The disadvantages of salt are, however, outweighed by its beneficial properties: high thermal conductivity, good hydro-mechanical properties, and a tendency to creep and thus seal cracks. These characteristics make rock salt a very attractive candidate to host a geological repository for essentially all kinds of radioactive waste.
Read MoreThe Russian Strategy of using Crystalline Rock as a Repository for Nuclear Waste
The first Russian underground repository for high- and intermediate-level radioactive waste (HLW and ILW, respectively) will be built in the crystalline Archean granite–gneisses at Yeniseisky (Krasnoyarsk region, Siberia). The geological and hydrogeological characteristics of this site are similar to those found in Forsmark (Sweden) and Olkiluoto (Finland). However, the Russian disposal strategy is different. HLW will be disposed in the form of an aluminophosphate glass and ILW (with long-lived radionuclides) will be cemented. Preliminary research on all aspects of repository design (stability of waste forms, waste packages, and bentonite buffer; evaluation of the geologic barrier; and simulation of radionuclide transport by groundwater) will be performed at an on-site underground research laboratory.
Read MoreCrystalline Rock as a Repository for Swedish Spent Nuclear Fuel
The granitic bedrock at Forsmark (Sweden) provides a well suited host rock for a geological repository in which to safely dispose of spent nuclear fuel. The properties of the host rock have been thoroughly investigated through boreholes from the surface. This repository will be at a depth of approximately 500 m where the spent nuclear fuel will be contained in 6,000 copper canisters able to withstand potential earthquakes and glaciation events. The canisters will be surrounded by a bentonite clay buffer to prevent canister corrosion by groundwater. The safety assessment in support of the site’s license application suggests that almost all of the canisters will remain tight even one million years into the future.
Read MoreGeological Disposal of Radioactive Waste in Clay
Keeping future generations safe from today’s nuclear waste relies on this waste being effectively isolated for all time. Clay rocks, or rocks with a high clay content, offer promising isolation properties over time periods that are as long as the age of their host geological formations. Constructing a repository in such material does not significantly change the clay’s isolation properties, which is a great advantage. Isolation is a function of the interplay between the slow release of radionuclides from the waste, the diffusion-controlled radionuclide migration, the establishment of a reducing geochemical environment, and the weak solubility and strong retention of the most toxic radionuclides on clay minerals and on additional engineered barrier materials.
Read MoreGeological Disposal of Nuclear Waste: a Primer
The back-end of the nuclear fuel cycle has become the Achilles Heel of nuclear power. After more than 50 years of effort, there are, at present, no operating nuclear waste repositories for the spent nuclear fuel from commercial nuclear power plants or for the high-level waste from the reprocessing of spent fuel. The articles in this issue of Elements describe the status of geological disposal in salt, crystalline rock, clay, and tuff, as presently developed in five countries.
Read MoreAbout v12n4 Global Nuclear Legacy; Elements Website, Facebook, Twitter; 2015 Impact Factor
For over 70 years, in the local community where the Elements editorial office is located, the residents have been living in the shadow of the Hanford nuclear production complex (eastern Washington, USA). During its heyday (1943–1987), this US government facility was responsible for producing 67.4 metric tons of plutonium for nuclear weapons from its 9 nuclear reactors and 5 processing plants. This was an inefficient process that generated ~53 million gallons of solid and liquid radioactive waste, which is stored in 177 large underground tanks, and ~450 billion gallons of liquids from the nuclear reactors which was discharged to soil disposal sites. This nuclear legacy remains today at the Hanford site. For the past 35 years, the US government has spent billions of dollars to monitor, characterize, contain, and clean up the waste at Hanford. Not only is this a complex and difficult process, but exactly where that waste will be permanently stored has yet to be decided as pointed out in this issue of Elements.
Read MoreNuclear Waste Disposal, Climate Change, and Brexit: The Importance of an Educated Public
Modern society faces a variety of major challenges that will impact the quality of our lives. Of these, 15 have been singled out as “Global Challenges” by the Millennium Project (2014)(see figure). One of the greatest of these challenges is the availability of sufficient clean water. Another is sustainable development and climate change. Much of the US public now accepts that the rapidly increasing levels of CO2 in the atmosphere are caused by human activity, including the burning of fossil fuels. However, there is little consensus among US scientists, engineers, politicians, and the public about how to reduce atmospheric CO2 levels, especially at a time when developing countries are seeking the same standard of living enjoyed by the world’s most industrialized countries. Yet another challenge, which is related both to the burning of fossil fuels and to climate change, is adequate energy to power our global society. As the World Nuclear Association (WNA) has shown, nuclear energy is an attractive option: for example, France derives over 75% of its electricity from nuclear fission (WNA 2015). One of the major societal concerns limiting the widespread use of nuclear power, however, is safe disposal of nuclear waste, which is the topic of this issue of Elements.
Read More