Skip to content
Elements Covers

Posts Tagged ‘February 2016’

Advanced Synchrotron Characterization of Paleontological Specimens

Characterizing fossils and quantifying paleoenvironmental proxies at a detailed scale is a significant challenge. Three-dimensional tomographic reconstructions are becoming increasingly common, and new imaging approaches, such as synchrotron-based fast X-ray scanning and full-field multispectral imaging, now provide the means to (1) describe fossil morphology at a very fine scale, (2) decipher long-term alteration processes, and (3) better identify conservation requirements.

Read More

Virtual Archaeology of Altered Paintings: Multiscale Chemical Imaging Tools

Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint’s optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artifacts for future generations.

Read More

The Earth Sciences from the Perspective of an Art Museum

The scientific investigation of works of art has an essential role in understanding museum collections and is fundamental in establishing successful conservation and restoration strategies. In the multidisciplinary environment of museums, scientists work with conservators and curators not only to more profoundly understand works of art but to better preserve them, and this often involves using analytical techniques borrowed from different disciplines of Earth sciences (e.g. mineralogy, geochemistry, and petrology). Two case studies – the stones of Angkor (Cambodia) and a blue paint mineral pigment – demonstrate how the Earth sciences are helping to identify, determine provenance, and conserve a broad spectrum of works of art. The impact on archaeological and art historical scholarship is substantial.

Read More

Geochronology Beyond Radiocarbon: Optically Stimulated Luminescence Dating of Palaenvironments and Archaeological Sites

This article reviews optically stimulated luminescence (OSL) dating as used on Quaternary sediments and for archaeological dating. The underlying physics is summarized and the laboratory method itself is described. Examples of OSL dating illustrate its use in palaeoenvironmental and archaeological contexts, although problems associated with the technique are also addressed. Finally, we discuss long-range variants of OSL that may help date deposits currently considered too old for OSL to be applied.

Read More

Optical Profilometry

Understanding the fine-scale surface structure of a material can be key for many applications in the Earth sciences. For example, characterizing grain abrasion in a clastic sediment or describing the morphology of surfaces produced during a hydrothermal reaction experiment. A common approach to such imaging tasks is…

Read More

Application of Geophysical Methods to Cultural Heritage

Archaeological geophysics is a vital part of exploring and documenting cultural heritage. Three of the most commonly used techniques are magnetometry, resistivity, and ground penetrating radar. These methods help archaeological geophysicists to unravel the complexity of many archaeological sites, including urban ones, old buildings, and built structures of cultural importance. However, local factors, such as constraints on time, local environment, pre-existing available information, and budgets, all contribute to a given site requiring unique geophysical surveying strategies. Four Spanish-based, but generally applicable, case studies will illustrate key geophysical strategy types for particular local archaeological conditions.

Read More

The Contribution of Geoscience to Cultural Heritage Studies

This issue of Elements celebrates the diverse contributions that the Earth sciences have made to characterizing, interpreting, conserving, and valorizing cultural heritage. Archaeometry and conservation science are connected to the geosciences at different levels. Earth scientists possess a profound perception of the complexity of natural materials, they have the necessary knowledge of the ancient and recent geological and physico-chemical processes acting on natural materials and on the artifacts produced by human activities, and they master most of the techniques useful to investigate our common heritage. Therefore, Earth scientists can greatly contribute towards a better understanding and preservation of our past.

Read More

Qarabawi’s Charm: Looking Beyond the Science

If you have been reading CosmoELEMENTS over the last few years, you will have realized that much of our understanding of Solar System history, including its earliest events, is derived from the study of meteorites. Scientifically, they are exceptionally valuable samples and, as such, it is sometimes hard to take a step back and realize that some meteorites have a cultural and historical value that is even greater. Back before the cosmic origins of meteorites were accepted, it is understandable that any material that fell from the heavens was the subject of some debate; historically, meteoritic material was often viewed as especially rare and valuable, as a gift from the Gods, or even cursed.

Read More

The Royal Society of Canada Names New Fellows

Roger François (Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Canada) and Philippe Van Cappellen (Department of Earth and Environmental Sciences, University of Waterloo, Ontario, Canada) were inducted as Fellows of the Royal Society of Canada at the society’s Induction and Awards Ceremony on 28 November 2015 in Victoria, British Columbia.

Read More

The Pyramids of Giza and Archimedes’ Palimpsest: What Would Indiana Jones Think of Modern Approaches to Archaeology?

My first exposure to cultural heritage occurred in 1974 when I was asked by a group of physicists from the Stanford Research Institute (now SRI International based in California, USA) to serve as a mineralogical consultant for their project on the pyramids of Giza (Egypt). Their objective was to perform radio frequency (rf) sounder experiments in search of archaeologically signifi cant hidden chambers.

Read More
Scroll To Top