Elements Covers

Posts Tagged ‘free article’

Interpreting the Carbon Isotope Record of Mass Extinctions

Mass extinctions are global-scale environmental crises marked by the loss of numerous species from all habitats. They often coincide with rapid changes in the stable carbon isotope ratios (13C/12C) recorded in sedimentary carbonate and organic matter, ratios which can indicate substantial inputs to the surface carbon reservoirs and/or changes in the cycling of carbon. Models to explain these changes have provided much fuel for debate on the causes and consequences of mass extinctions. For example, the escape of methane from gas hydrate deposits or the emission of huge volumes of gaseous carbon from large-scale volcanic systems, known as large igneous provinces, may have been responsible for decreases of 13C/12C in sedimentary deposits. In this article, we discuss the challenges in distinguishing between these, and other, alternatives.

Read More

Earth’s Outgassing and Climatic Transitions: The Slow Burn Towards Environmental “Catastrophes”?

On multimillion-year timescales, outgassing from the Earth’s interior provides the principal source of CO2 to the ocean–atmosphere system, which plays a fundamental role in shaping the Earth’s baseline climate. Fluctuations in global outgassing have been linked to icehouse–greenhouse transitions, although uncertainties surround paleo-outgassing fluxes. Here, we discuss how volcanic outgassing and the carbon cycle have evolved in concert with changes in plate tectonics and biotic evolution. We describe hypotheses of driving mechanisms for the Paleozoic icehouse–greenhouse climates and explore how climatic transitions may have influenced past biotic crises and, in particular, how variable outgassing rates established the backdrop for carbon cycle perturbations to instigate prominent mass extinction events.

Read More

Deep Carbon and the Life Cycle of Large Igneous Provinces

Carbon is central to the formation and environmental impact of large igneous provinces (LIPs). These vast magmatic events occur over geologically short timescales and include voluminous flood basalts, along with silicic and low-volume alkaline magmas. Surface outgassing of CO2 from flood basalts may average up to 3,000 Mt per year during LIP emplacement and is subsidized by fractionating magmas deep in the crust. The large quantities of carbon mobilized in LIPs may be sourced from the convecting mantle, lithospheric mantle and crust. The relative significance of each potential carbon source is poorly known and probably varies between LIPs. Because LIPs draw on mantle reservoirs typically untapped during plate boundary magmatism, they are integral to Earth’s long-term carbon cycle.

Read More

The Influence of Large Bolide Impacts on Earth’s Carbon Cycle

Human society’s rapid release of vast quantities of CO2 into the atmosphere is a significant planetary experiment. An obvious natural process capable of similar emissions over geologically short time spans are very large bolide impacts. When striking a carbon-rich target, bolides significantly, and potentially catastrophically, disrupt the global biogeochemical carbon cycle. Independent factors, such as sulfur-rich targets, redox state of the oceans or encountering ecosystems already close to a tipping point, dictated the magnitude of further consequences and determined which large bolide strikes shaped Earth’s evolution. On the early Earth, where carbon-rich sedimentary targets were rare, impacts may not have been purely destructive. Instead, enclosed subaqueous impact structures may have contributed to initiating Earth’s unique carbon cycle.

Read More

On the Origin(s) and Evolution of Earth’s Carbon

The isotopic “flavor” of Earth’s major volatiles, including carbon, can be compared to the known reservoirs of volatiles in the solar system and so determine the source of Earth’s carbon. This requires knowing Earth’s bulk carbon isotope value, which is not straightforward to determine. During Earth’s differentiation, carbon was partitioned into the core, mantle, crust, and atmosphere. Therefore, although carbon is omnipresent within the Earth system, scientists have yet to determine its distribution and relative abundances. This article addresses what we know of the processes involved in the formation of Earth’s carbon reservoirs, and, by deduction, what we know about the possible origins of Earth’s carbon.

Read More

Earth Catastrophes and Their Impact on the Carbon Cycle

Carbon is one of the most important elements on Earth. It is the basis of life, it is stored and mobilized throughout the Earth from core to crust and it is the basis of the energy sources that are vital to human civilization. This issue will focus on the origins of carbon on Earth, the roles played by large-scale catastrophic carbon perturbations in mass extinctions, the movement and distribution of carbon in large igneous provinces, and the role carbon plays in icehouse–greenhouse climate transitions in deep time. Present-day carbon fluxes on Earth are changing rapidly, and it is of utmost importance that scientists understand Earth’s carbon cycle to secure a sustainable future.

Read More

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models

Beneath our feet is a fascinating world of flowing water, cosmopolitan microbes, and complex mineral assemblages. Yet we see none of it from above. Our quest to investigate these complex subsurface interactions has led to the development of reactive transport models. These are computer algorithms that allow us to explore, in a virtual way, the natural dynamics of Earth’s systems and our anthropogenic impact on those systems. Here, we explain the concepts behind reactive transport models—which include the transport of aqueous species and the descriptions of biogeochemical reactions involving solutes, surfaces and microorganisms—and introduce to reactive transport applications in terrestrial and marine environments.

Read More

Deep-Ocean Mineral Deposits: Metal Resources and Windows into Earth Processes

Deep-ocean mineral deposits could make a significant contribution to future raw material supply. Growing metal demand and geopolitics are focussing increasing attention on their resource potential and economic importance. However, accurate assessment of the total amounts of metal and its recoverability are very difficult. Deep-ocean mineral deposits also provide valuable windows through which to study the Earth, including the evolution of seawater and insights into the exchange of heat and chemicals between the crust and the oceans. Exploration for, and potential extraction of, deep-ocean mineral deposits poses many geological, technical, environmental and economic challenges, as well as regulatory and philosophical questions. Great uncertainty exists, and the development and stewardship of these deposits requires an incremental approach, encouraging transparency and scientific and civil societal input to balance the interests of all.

Read More

The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov-Gerasimenko

Comets are regarded as probably the most primitive of solar system objects, preserving a record of the materials from which the solar system aggregated. Key amongst their components are organic compounds – molecules that may trace their heritage to the interstellar medium from which the protosolar nebula eventually emerged. The most recent cometary space mission, Rosetta, carried instruments designed to characterize, in unprecedented detail, the organic species in comet 67P/Churyumov–Gerasimenko (67P). Rosetta was the first mission to match orbits with a comet and follow its evolution over time, and also the first mission to land scientific instruments on a comet surface. Results from the mission revealed a greater variety of molecules than previously identified and indicated that 67P contained both primitive and processed organic entities.

Read More

Responsible Sourcing of Critical Metals

Most critical raw materials, such as the rare-earth elements (REEs), are starting products in long manufacturing supply chains. Unlike most consumers, geoscientists can become involved in responsible sourcing, including best environmental and social practices, because geology is related to environmental impact factors such as energy requirements, resource efficiency, radioactivity and the amount of rock mined. The energy and material inputs and the emissions and waste from mining and processing can be quantified, and studies for REEs show little difference between ‘hard rocks’, such as carbonatites, and easily leachable ion-adsorption clays. The reason is the similarity in the embodied energy in the chemicals used for leaching, dissolution and separation.

Read More