Author name: Gregory K. Druschel

Geomicrobiology and Microbial Geochemistry

Geomicrobiology and microbial geochemistry (GMG) investigates the interaction between Earth, environmental systems, and microbial life. Microbes shape their geochemical surroundings through their metabolic and growth needs and thereby exert significant geochemical and mineralogical control on their local environments. In turn, local geochemical conditions dictate what metabolic processes are possible. These mutual influences mean that microbial evolution has occurred in concert with changing geosphere conditions and that microbes have driven major shifts in ocean, continent and atmospheric chemistry. If one wishes to understand element cycling in any system containing water, one must realize that microbes are critical to the story.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Geomicrobiology and Microbial Geochemistry Read More »

Impact of Biogenic Magnetite Formation and Transformation on Biogeochemical Cycles

Magnetite is a redox-active mineral that can form from both abiotic and biotic processes, and plays an active role in different biogeochemical cycles. Biogenic magnetite particles have properties that differ from their abiogenic counterparts in a variety of ways, including their size, chemical purity, magnetic properties, and association with biomass-derived organic matter. These properties directly influence magnetite reactivity—in particular its sorbent and redox behavior—affecting its association with metals, oxyanions, and other compounds in the environment. Biogenic (and abiogenic) magnetite particles are involved in redox processes by storing electrons, functioning as biogeobatteries, and by transferring electrons between microbial cells or between cells and inorganic constituents. Thus, magnetite influences the fate of contaminants and nutrients in the environment.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Impact of Biogenic Magnetite Formation and Transformation on Biogeochemical Cycles Read More »

IRON IN MICROBIAL METABOLISMS

Microbes are intimately involved in the iron cycle. First, acquisition of iron by microorganisms for biochemical requirements is a key process in the iron cycle in oxygenated, circumneutral pH environments, where the solubility of Fe (III) (oxyhydr)oxides is extremely low. Second, a number of aerobic (using O2) and anaerobic (living in the absence of O2) autotrophic bacteria gain energy for growth from the oxidation of dissolved and solid-phase Fe(II) compounds to Fe(III) (oxyhydr)oxides. Third, heterotrophic Fe (III)-reducing bacteria close the chemical loop by reducing solid-phase Fe (III) minerals back to dissolved and solid-phase Fe(II). Together these metabolic processes control the partitioning of the Earth’s fourth most abundant crustal element, and they are additionally tied to the cycling of several major nutrients (e.g. carbon, oxygen, nitrogen, sulfur) and trace elements (e.g. phosphorus, nickel) in modern and ancient environments.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

IRON IN MICROBIAL METABOLISMS Read More »

Scroll to Top