Author name: Roberto Moretti

Volcanic and Geothermal Redox Engines

The redox (reduction–oxidation) potential is an essential variable that controls the chemical reactions of fluids in magmatic and associated geothermal systems. However, the evolution of the redox potential is difficult to trace from a magma’s source at depth to the surface. The key is knowing that electron transfer is the twin face of the acid–base exchanges that drive charge transfer in the many reactions that occur in multiphase and chemically complex systems. The deduced redox reactivity can reveal many features about the evolution of a system’s composition and the external factors that control it. As such, redox potential analysis is an important geochemical tool by which to monitor volcanoes and to explore geothermal systems.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Volcanic and Geothermal Redox Engines Read More »

Fluids in Geothermal Systems

Hot fluids are nearly ubiquitous in volcanic environments in the Earth’s crust. Magma at depth heats groundwater which then ascends towards the Earth’s surface through faults, fractures, and otherwise permeable rocks. Fluids in geothermal systems offer direct insight into the many complex chemical and physical processes that occur in these extreme environments. They are also analogues of many ore-forming systems. Scientists have advanced our understanding of fluids in geothermal systems by studying wells sunk ~2–3 km deep into many geothermal fields. Today, we are targeting deeper and hotter reservoirs, at or near the contact of magmatic bodies, which provide unique opportunities to study, and potentially utilize, supercritical fluid resources in the near future.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Fluids in Geothermal Systems Read More »

Scroll to Top