Author name: Bradley T. De Gregorio

Diversity of Complex Organic Matter in Carbonaceous Chondrites, IDPs, and UCAMMs

Complex organic matter is present in many extraterrestrial materials such as chondrite meteorites, micrometeorites, and interplanetary dust. The observed complexity of this organic matter is due to the combination of diversity of primitive organic materials that accreted onto asteroids and the subsequent effect of hydrothermal and/or metamorphic alteration that took place after accretion. These processes resulted in a variety of carbonaceous grain morphologies, elemental abundances, and organic functional group compositions. Some carbonaceous dust grains and micrometeorites have cometary origins and provide insights into the unique processing histories on those outer Solar System bodies. Isotopic analyses can help distinguish carbonaceous grains that retain their pre-accretion heritage, while advanced microscopy techniques reveal the interplay of complex organic matter with surrounding mineral.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Diversity of Complex Organic Matter in Carbonaceous Chondrites, IDPs, and UCAMMs Read More »

The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov-Gerasimenko

Comets are regarded as probably the most primitive of solar system objects, preserving a record of the materials from which the solar system aggregated. Key amongst their components are organic compounds – molecules that may trace their heritage to the interstellar medium from which the protosolar nebula eventually emerged. The most recent cometary space mission, Rosetta, carried instruments designed to characterize, in unprecedented detail, the organic species in comet 67P/Churyumov–Gerasimenko (67P). Rosetta was the first mission to match orbits with a comet and follow its evolution over time, and also the first mission to land scientific instruments on a comet surface. Results from the mission revealed a greater variety of molecules than previously identified and indicated that 67P contained both primitive and processed organic entities.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov-Gerasimenko Read More »

Organic Matter in Cosmic Dust

Organics are a significant component of most cosmic dust, as revealed from actual samples of extraterrestrial dust in the Earth’s stratosphere, in Antarctic ice and snow, in near-Earth orbit, and in asteroids and comets. Cosmic dust contains a diverse population of organic materials that owe their origins to a variety of chemical processes occurring in many different environments. The presence of isotopic enrichments of D and 15N suggests that many of these organic materials have an interstellar or protosolar heritage. The study of these samples is of considerable importance because they are the best preserved materials of the early Solar System available.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Organic Matter in Cosmic Dust Read More »

Composition of Cosmic Dust: Sources and Implications for the Early Solar System

Many cosmic dust particles have escaped the aqueous and thermal processing, the gravitational compaction, and the impact shocks that often overprint the record, in most larger samples, of how Solar System materials formed. The least-altered types of cosmic dust can, therefore, act as probes into the conditions of the solar protoplanetary disk when the first solids formed. Analyses of these “primitive” particles indicate that the protoplanetary disk was well mixed, that it contained submicron grains formed in a diversity of environments, that these grains were aerodynamically transported prior to aggregation, which was likely aided by organic grain coatings, and that some minerals that condensed directly from the disk are not found in other materials. These protoplanetary aggregates are not represented in any type of meteorite or terrestrial rock. They can only be studied from cosmic dust.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Composition of Cosmic Dust: Sources and Implications for the Early Solar System Read More »

Scroll to Top