Author name: Colin J.N. Wilson

Volcanoes: Characteristics, Tipping Points, and those Pesky Unknown Unknowns

The geological record of volcanic eruptions suggests that scientists are some way from being able to forecast eruptions at many of the world’s volcanoes. There are three reasons for this. First, continuing geological discoveries show that our knowledge is incomplete. Second, knowledge is limited about why, how, and when volcanic unrest turns into eruptions, and over what timescales. Third, there are imbalances between the studies of past eruptions, and the geophysical techniques and observations on modern events, versus the information needed or demanded by society. Scientists do not yet know whether there are other, presently unknown, factors that are important in controlling eruptions, or if there is an inherent unknowability about some volcanic systems.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Volcanoes: Characteristics, Tipping Points, and those Pesky Unknown Unknowns Read More »

The Life and Times of Silicic Volcanic Systems

Silicic volcanic systems provide timed snapshots at the Earth’s surface of the magmatic processes that also build complementary plutons in the crust. Links between these two realms are considered here using three Quaternary (<2.6 Ma) examples from New Zealand and the USA. In these systems, magmatic processes can be timed and the changes in magmatic conditions can be followed through the sequence of quenched volcanic eruption products. Before an eruption, magma accumulation processes can occur on timescales as short as decades, and whole magma systems can be rebuilt in millennia. Silicic volcanic processes, in general, act on timescales that are too rapid to be effectively measured in the exposed plutonic record.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Life and Times of Silicic Volcanic Systems Read More »

Supereruptions and Supervolcanoes: Processes and Products

Pyroclastic deposits and lava flows generated by supereruptions are similar to, but tens of times larger than, those observed in historic eruptions. Physical processes control eruption styles, which then dictate what products are available for sampling and how well the eruption sequence can be determined. These erupted products and their ordering in time permit reconstruction of the parental magma chamber. Supervolcanoes also have smaller eruptions that provide snapshots of magma chamber development in the lead-in to and aftermath of supereruptions. Many aspects of supereruption dynamics, although on a vast scale, can be understood from observations or inferences from smaller historic and prehistoric events. However, the great diversity in the timings of supereruptions and in the eruptive behaviour of supervolcanoes present continuing challenges for research.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Supereruptions and Supervolcanoes: Processes and Products Read More »

Scroll to Top