Author name: Blair Schoene

Precision and Accuracy in Geochronology

Geochronology in Earth and Solar System science is increasingly in demand, and this demand is not only for more results, but for more precise, more accurate, and more easily interpreted temporal constraints. Because modern research often requires multiple dating methods, scrupulous inter- and intramethod calibration in absolute time is required. However, improved precision has highlighted systematic analytical biases and uncovered geologic complexity that affects mineral dates. At the same time, both enhanced spatial resolution through microbeam geochronology and creative uses of disparate data sets to inform age interpretations have helped explain complexities in age data. Quantifying random and systematic sources of instrumental and geological uncertainty is vital, and requires transparency in methodology, data reduction, and reporting. Community efforts toward inter- and intracalibration of chronometers will continue to help achieve the highest possible resolving power for integrative geochronology.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Precision and Accuracy in Geochronology Read More »

One Hundred Years of Isotope Geochronology, and Counting

In 1913, Frederick Soddy’s research on the fundamentals of radioactivity led to the discovery of “isotopes.” Later that same year, Arthur Holmes published his now famous book The Age of the Earth, in which he applied this new science of radioactivity to the quantification of geologic time. Combined, these two landmark events did much to establish the field of “isotope geochronology” – the science that underpins our knowledge of the absolute age of most Earth (and extraterrestrial) materials. In celebrating the centenary, this issue brings together modern perspectives on the continually evolving fi eld of isotope geochronology – a discipline that reflects and responds to the demands of studies ranging from the early evolution of the Solar System to our understanding of Quaternary climate change, and the 4.5 billion years in between.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

One Hundred Years of Isotope Geochronology, and Counting Read More »

Scroll to Top