Author name: Paulo M. Vasconcelos

The Paleoclimatic Signatures of Supergene Metal Deposits

Supergene metal deposits host a comprehensive record of climate-driven geochemical reactions that may span the entire Cenozoic. Products of these reactions can be dated by a variety of radiogenic isotopic methods, such as 40Ar/39Ar, (U–Th)/He, U–Pb, and U-series. The frequency of mineral precipitation, determined by dating a representative number of samples of a particular mineral collected from distinct parts of the supergene ore body, refl ects times in the geological past when weathering conditions were conducive to water–rock interaction. The frequency of mineral precipitation through time permits identifying periods in the geological past when climatic conditions were most conducive to chemical weathering and supergene ore genesis.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Paleoclimatic Signatures of Supergene Metal Deposits Read More »

Lazed and Diffused: Untangling Noble Gas Thermochronometry Data for Exhumation Rates

Thermochronometric data can record the thermal history of rocks as they cool from high temperatures at depth to lower temperatures at the surface. This provides a unique perspective on the tectonic processes that form topography and the erosional processes that destroy it. However, quantitatively interpreting such data is a challenge because multiple models can do an equally good job at reproducing the data. In this article, we describe how inverse modeling can be used to improve quantitative interpretations of noble gas thermochronometric data on a variety of scales, ranging from mountain belts to individual mineral grains.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Lazed and Diffused: Untangling Noble Gas Thermochronometry Data for Exhumation Rates Read More »

Scroll to Top