Author name: Douglas Rumble

Stable Isotope Cosmochemistry and the Evolution of Planetary Systems

Stable isotopes record the evolution of planetary systems, beginning with stars coalescing from molecular clouds, followed by the nucleosynthesis of elements in stars, and proceeding to the accretion and differentiation of planets. Current stable isotope measurements range in scale from isotopic mapping of the Milky Way Galaxy with spectrographs on telescopes to the analysis of stardust with ion probes

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Stable Isotope Cosmochemistry and the Evolution of Planetary Systems Read More »

Planetary Evaporation

Evaporation of magma oceans exposed to space may have played a role in the chemical and isotopic compositions of rocky planets in our Solar System (e.g., Earth, Moon, Mars) and their protoplanetary antecedents. Chemical depletion of moderately volatile elements and the enrichment of these elements’ heavier isotopes in the Moon and Vesta relative to chondrites are clear examples. Evaporation is also thought to be an important process
in some exoplanetary systems. Identification of evaporation signatures among the rock-forming elements could elucidate important reactions between melts and vapors during planet formation in general, but the process is more complicated than is often assumed.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Planetary Evaporation Read More »

Scroll to Top