Author name: Friedhelm von Blanckenburg

Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change

Cosmogenic nuclides are very rare isotopes that are produced when particles generated in supernovas in our galaxy hit the atmosphere and then the Earth’s surface. When the rocks and soils in this thin, ever-changing surface layer are bombarded by such cosmic radiation, the nuclide clock begins to tick, thus providing dates and rates of Earth-surface processes. The measurement of cosmogenic nuclides tells us when earthquakes created topography at faults, when changing climate led to the growth of glaciers, how fast rivers grind mountains down, and how fast rocks weather to soil and withdraw atmospheric CO2. The use of cosmogenic nuclides is currently revolutionizing our understanding of Earth-surface processes and has significant implications for many Earth science disciplines.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change Read More »

Physical and Chemical Controls on the Critical Zone

Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Physical and Chemical Controls on the Critical Zone Read More »

Fractionation of Metal Stable Isotopes by Higher Plants

Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal’s redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth’s surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Fractionation of Metal Stable Isotopes by Higher Plants Read More »

Scroll to Top