Author name: Jay D. Bass

Deep Earth and Recent Developments in Mineral Physics

Very few rocks on the Earth’s surface come from below the crust. In fact, most of Earth’s interior is unsampled, at least in the sense that we do not have rock samples from it. So how do we know what is down there? Part of the answer comes from laboratory and computer experiments that try to recreate the enormous pressure–temperature conditions in the deep Earth and to measure the properties of minerals under these conditions. This is the realm of high-pressure mineral physics and chemistry. By comparing mineral properties at high pressures and temperatures with geophysical observations of seismic velocities and density at depth, we get insight into the mineralogy, composition, temperature, and deformation within Earth’s interior, from the top of the mantle to the center of the planet.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Deep Earth and Recent Developments in Mineral Physics Read More »

New Opportunities at Emerging Facilities

Synchrotron X-ray sources and pulsed neutron sources are getting brighter. This permits new opportunities for scattering, spectroscopy, and imaging studies of Earth materials and processes that were not possible a decade ago. The impact of these latest-generation facilities on Earth sciences research requiring nanometer- to micrometer-scale resolution is growing and will continue to grow as next-generation X-ray and neutron sources become available over the next six years. These facilities will include the world’s first X-ray free-electron lasers in the US (2009) and Europe (2012) and the Spallation Neutron Source at Oak Ridge National Laboratory, USA (2006). In addition, five nanoscale science research centers are under con- struction in the US and will impact the emerging field of nanogeoscience.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

New Opportunities at Emerging Facilities Read More »

Probing Phase Transitions and Magnetism in Minerals with Neutrons

The development of sophisticated sample environments to control temperature, pressure, and magnetic field has grown in parallel with neutron source and instrumentation development. High-pressure apparatus, with high- and low-temperature capability, novel designs for diamond cells, and large volume presses are matched with next-generation neutron sources and moderator designs to provide unprecedented neutron beam brightness. Recent developments in sample environments are expanding the pressure–temperature space accessible to neutron scattering experiments. Researchers are using new capabilities and an increased understanding of the fundamentals of structural and magnetic transitions to explore new territories, including hydrogenous minerals (e.g., ices and hydrates) and magnetic structural phase diagrams.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Probing Phase Transitions and Magnetism in Minerals with Neutrons Read More »

Scroll to Top