Author name: Anne H. Peslier

Water in Differentiated Planets, the Moon, and Asteroids

The distribution of water in differentiated Solar System bodies depends on many factors including size, distance from the Sun, and how they incorporated water. Most of this water is likely locked as hydrogen in mantle minerals and could amount to several Earth oceans worth in mass for the largest planets. An essential compound for the development of life, water also has a tremendous influence on planetary evolution and volcanism. Only Earth has an active exchange of water between surface and mantle. Surface water on other differentiated bodies mostly results from degassing by volca- noes whose mantle sources are inherited from magma ocean processes early in their history. Airless bodies also acquire surface water by impacts, spallation, and from the solar wind.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Water in Differentiated Planets, the Moon, and Asteroids Read More »

Unique, Antique Vesta

Most asteroids are collisional rubble from eons past, and few of them have survived intact. Vesta, the second most massive asteroid, is the only differentiated, rocky body in this category. This asteroid provides a unique view of the kinds of planetesimals that accreted to form the terrestrial planets. We know more about this asteroid than any other, thanks to its recently completed exploration by the orbiting Dawn spacecraft and studies of the ~1000 meteorites derived from it. The synergy provided by in situ analyses and samples has allowed an unparalleled understanding of Vesta’s mineralogy, petrology, geochemistry, and geochronology.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Unique, Antique Vesta Read More »

Scroll to Top