Thematic Articles

Impacts of Large-Scale Magmatism on Land Plant Ecosystems

Terrestrial ecosystems are integral components of global carbon budgets and modulators of Earth’s climate. Emplacement of large igneous provinces (LIPs) is implicated in almost every mass extinction and smaller biotic crises in Earth’s history, but the effects of these and other large-scale magmatic events on terrestrial ecosystems are poorly understood. Palynology, the study of fossilized pollen and spores, offer a means to robustly reconstruct the types and abundance of plants growing on the landscape and their response to Earth crises, permitting predictions of the response of terrestrial vegetation to future perturbations. We review existing palynological literature to explore the direct and cumulative impacts of large-scale magmatism, such as LIP-forming events, on terrestrial vegetation composition and dynamics over geological time.

Impacts of Large-Scale Magmatism on Land Plant Ecosystems Read More »

Large Igneous Provinces and the Release of Thermogenic Volatiles from Sedimentary Basins

Large igneous provinces (LIPs) are characterized by flood basalts and extensive magmatic plumbing systems. When sills and dykes are emplaced in sedimentary basins, the heat released can result in extensive contact metamorphism and gas generation. During the past 20 years, this process has been highlighted as potentially playing a key role in terms of proposed links between LIPs and global environmental changes. The geochemistry of the sedimentary rocks that the magma intrudes, and their potential to generate thermogenic gases such as CO2 and CH4 during heating, are critical controlling factors.

Large Igneous Provinces and the Release of Thermogenic Volatiles from Sedimentary Basins Read More »

How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times

Evolution has not been a simple path. Since the first appearance of complex life, there have been several mass extinctions on Earth. This was exemplified by the most severe event during the Phanerozoic, the end-Permian mass extinction that occurred 252 million years ago and saw a loss of 90% and 70% of all marine and terrestrial species, respectively. Such mass extinctions have entirely reset ecosystems. Increasing evidence points to the massive eruption and crustal emplacement of magmas associated with large igneous provinces (LIPs) as key drivers of these events. Understanding how LIP events disrupted global biogeochemical cycles is of prime importance, especially as humans alter the atmosphere and biosphere today. We explore the cascading impacts of LIP events on global climate, oceans, and land—including runaway greenhouses, the release of toxic metals to the environment, the destruction of the ozone layer, and how global oceans are driven to anoxic and acidic states— all of which have parallels in the consequences of modern industrialisation.

How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times Read More »

Driving Global Change One LIP at a Time

Earth’s history has been punctuated by extraordinary magmatic events that produced large igneous provinces (LIPs). Many LIPs induced global changes, including millennial-scale warming, terrestrial and oceanic mass extinctions, oceanic anoxic events, and even glaciations. Research over the past 20 years has shown that shallow crustal degassing is an important factor contributing to the environmental impact of LIPs. Contact metamorphism in sedimentary basins can generate huge gas volumes, and operates as a function of magma volume and the architecture of LIP plumbing systems. Numerous open questions remain concerning the role of LIPs in triggering rapid and lasting changes, whose answers require collaboration across geoscientific disciplines. In this issue, we present the status of five key research themes and discuss potential ways forward to better understanding these large-scale phenomena.

Driving Global Change One LIP at a Time Read More »

Perspective: The Future Exploration of Io

Io is one of the best natural laboratories in the Solar System to study the intertwined processes of tidal heating, extreme volcanism, and atmospheric–magnetosphere–surface interactions. While substantial advances can be made with forthcoming ground- and space-based observatories, many outstanding questions can only be addressed with in situ measurements at Io. Several spacecraft will explore the Jupiter system in the next decade, but their capabilities to investigate Io are limited. A dedicated Io mission is neces- sary to capitalize on Io’s scientific potential. Previous Io mission concepts have spanned the gamut, including small spacecraft, multiple-flyby missions, orbiters, and landers. New technologies, including advanced solar power and radiation hardening, make Io exploration more tractable, and the potential for contemporaneous measurements from multiple spacecraft in the Jupiter system make a modern Io mission all the more compelling.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Perspective: The Future Exploration of Io Read More »

The Cycles Driving Io’s Tectonics

Io is famous for its active volcanoes, but its vigorous tectonics, which are unlike Earth’s plate tectonics, are no less remarkable. The nature of Io’s thick, cold, brittle lithosphere has been revealed through decades of investigations. The dynamics of this system is most easily explained by considering three cycles: magmatic, tectonic, and sulfurous. The magmatic cycle trans- ports heat by a “heat pipe” process that may have operated during the earliest histories of many of the rocky bodies in the Solar System. The subsidence of the erupted lavas drives mountain uplift in the tectonic cycle. Sulfurous fluids could have a significant impact on the movement of both heat and rock.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Cycles Driving Io’s Tectonics Read More »

The Internal Structure of Io

Io is a differentiated body with a silicate crust and mantle, and an iron-rich core. However, its internal structure, especially that of its mantle, differs from that of other terrestrial bodies, as a result of the intense heat supply by tidal dissipation. The amount and distribution of melt in Io’s interior strongly depend on the composition, as well as the heat and mass transport mecha- nisms operating at depth and in the near-surface. This article discusses melting processes and the mechanisms of magma segregation inside Io, informed by Earth-based observations and spacecraft measurements, as well as thermo- chemical and thermo-physical modeling.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Internal Structure of Io Read More »

Io’s Volcanic Activity and Atmosphere

Driven by tidal heating, Io’s extreme volcanism has created a young, impact crater–free surface dominated by hundreds of active volcanic centres. From these volcanoes erupt voluminous, low-viscosity, high-temperature silicate lavas. Volcanic plumes, from venting gas and mobilised surface ices (primarily SO2 and S), contribute to Io’s thin atmosphere. Away from volcanoes, SO2 ice on the surface alternately sublimes during the daytime and condenses during eclipses and at night, resulting in a strong day/night atmospheric dichotomy. Sunlight and radiation bombardment at high altitude breaks the gas molecules apart, leading to the formation of SO, O, O2, S, K, Na, and Cl. These atoms reside as both neutral and charged particles in clouds that are found along Io’s orbit around Jupiter.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Io’s Volcanic Activity and Atmosphere Read More »

Tidal Heating in Io

Io experiences strong, periodic, gravitational tides from Jupiter because of its close distance to the planet and its elliptic orbit. This generates internal friction that heats the interior, a naturally occurring process in the Solar System and beyond. Io is unique in our Solar System because it gets most of its internal energy from this tidal heating, providing an ideal laboratory for improving our understanding of this fundamental process that plays a key role in the thermal and orbital evolution of the Moon, satellites in the outer Solar System, and extrasolar planets.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Tidal Heating in Io Read More »

Io: A Unique World in our Solar System

Jupiter’s moon Io is the most volcanically active world in our Solar System. Eruptions on Io sustain its atmosphere, feed the Jovian magnetosphere, and contaminate neighboring moons. This unique volcanic and tectonic activity is powered by tidal heating, caused by its gravitational interactions with Jupiter and other moons. The silicate crust of Io is coated with sulfur compounds, and its interior—one that is exceptional for an outer-planet moon—is composed of a metallic core and a silicate mantle that may host a magma ocean. Such spectacular large-scale volcanism and high heat flow provide insights into the processes that shaped all terrestrial bodies. Future exploration of Io would answer key questions and herald a new era of discoveries about the evolution of terrestrial planets and moons within our Solar System and beyond.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Io: A Unique World in our Solar System Read More »

Scroll to Top