Thematic Articles

Reactive Transport of Stable Isotopes

Isotopes have a rich history as tracers of biogeochemical processes, but they are commonly interpreted using distillation models that lump multiple compounding effects, including advection, diffusion, and complex chemical transformations. Today, as our ability to measure small differences in relative mass continues to improve, a new generation of process-based models are being developed that explicitly track individual isotopes across an increasingly diverse range of environments. Advances in isotopic reactive transport models are now yielding new insight into fundamental questions across the Earth sciences, including the relationships between experiments and natural systems and the conditions under which isotopes record past environments.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport of Stable Isotopes Read More »

Reactive Transport Models of Weathering

Continental rocks chemically weather when surficial waters and gases interact with the minerals and organisms that inhabit Earth’s critical zone. To understand and quantify this process, researchers use reactive transport models to track the kinetics and thermodynamics of weathering reactions and the transport of products and reactants. These models are powerful tools to explore how weathering sculpts the Earth’s surface from the scale of mineral grains to watersheds, and across temporal scales from seconds to millions of years. Reactive transport model simulations are now a vital tool for elucidating the complex links between climate, rock ­weathering, and biota.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport Models of Weathering Read More »

Reactive Transport Modeling: A Key Performance Assessment Tool for the Geologic Disposal of Nuclear Waste

The disposal of spent nuclear fuel and high-level radioactive waste in the subsurface represents one of the greatest challenges for the geosciences. Most disposal strategies rely on a multiple barrier system, consisting of both natural and engineered materials, to prevent or delay the contact of groundwater with the waste and radionuclide release to the environment. Reactive transport models have been central to understanding and assessing how thermal, hydrological, and geochemical processes are coupled in these containment barriers, which are expected to experience a range of temperatures and geochemical conditions, yet, must maintain their integrity for millions of years.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport Modeling: A Key Performance Assessment Tool for the Geologic Disposal of Nuclear Waste Read More »

The Role of Reactive Transport Modeling in Geologic Carbon Storage

The engineered storage of CO2 in Earth’s subsurface provides one of the most promising means of reducing net greenhouse gas emissions. Paramount to the success of this method is ensuring that CO2 injected into the subsurface is securely stored. Reactive transport models can be used to answer the key question regarding CO2 storage, “Will the injected CO2 be secure, and over what timescale?” Here, we explore examples of how reactive transport models have been used to simulate the range of geochemical and hydrologic processes that will take place over thousands of years and across many spatial scales to answer that key question.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Role of Reactive Transport Modeling in Geologic Carbon Storage Read More »

Using Reactive Transport Models to Quantify and Predict Groundwater Quality

The hydrochemical composition of most groundwater systems, whether pristine or affected by anthropogenic activities, evolves as a result of complex interactions between flow, solute transport and biogeochemical processes. An in-depth analysis of these processes and their interactions is essential for deciphering what controls groundwater quality. Reactive transport modeling has emerged as an invaluable tool for distilling complex systems into their salient components. Based on experimental data, reactive transport models have been successfully used in the rigorous, process-based quantification of coupled processes at bench and field scales. We illustrate how reactive transport modeling can aid in identifying and quantifying controls over groundwater quality.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Using Reactive Transport Models to Quantify and Predict Groundwater Quality Read More »

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models

Beneath our feet is a fascinating world of flowing water, cosmopolitan microbes, and complex mineral assemblages. Yet we see none of it from above. Our quest to investigate these complex subsurface interactions has led to the development of reactive transport models. These are computer algorithms that allow us to explore, in a virtual way, the natural dynamics of Earth’s systems and our anthropogenic impact on those systems. Here, we explain the concepts behind reactive transport models—which include the transport of aqueous species and the descriptions of biogeochemical reactions involving solutes, surfaces and microorganisms—and introduce to reactive transport applications in terrestrial and marine environments.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models Read More »

The Kos–Nisyros–Yali Volcanic Field

The Kos–Nisyros–Yali volcanic field has produced a range of volcanic products over the last 3 million years. Volumetrically, silicic magma dominates, and activity includes one of the largest known explosive eruptions of the Aegean arc, the >60 km3 (dense-rock equivalent), 161 ka rhyolitic Kos Plateau Tuff. The Kos–Nisyros–Yali volcanic field is situated within an area of active crustal extension, which has greatly influenced magmatic processes and landscape development in the region. Recent seismic unrest, surface deformation and intense geothermal activity indicate that the system remains active, particularly around the Nisyros and Yali edifices. These signs of magmatic activity, together with the fact that the most recent eruptions have become increasingly silicic, would justify detailed monitoring of the area.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Kos–Nisyros–Yali Volcanic Field Read More »

The Late Bronze Age Eruption of Santorini Volcano and Its Impact on the Ancient Mediterranean World

The Late Bronze Age eruption of Santorini occurred 110 km north of Minoan Crete (Greece). Having discharged between 48 and 86 km3 of magma and rock debris, the eruption ranks as one of the largest of the last 10,000 years. On Santorini, it buried the affluent trading port of Akrotiri. Modern volcanological research has reconstructed the eruption and its regional impacts in detail, while fifty years of archaeological excavations have unraveled the events experienced by the inhabitants of Akrotiri during the months that led up to the eruption. Findings do not favour a direct relationship between the eruption and the decline of the Minoan civilization, although tsunamis and atmospheric effects may have weakened Cretan society through impacts on shipping, trade and agriculture.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Late Bronze Age Eruption of Santorini Volcano and Its Impact on the Ancient Mediterranean World Read More »

Santorini Volcano and its Plumbing System

Santorini Volcano is an outstanding natural laboratory for studying arc volcanism, having had twelve Plinian eruptions over the last 350,000 years, at least four of which caused caldera collapse. Periods between Plinian eruptions are characterized by intra-caldera edifice construction and lower intensity explosive activity. The Plinian eruptions are fed from magma reservoirs at 4–8 km depth that are assembled over several centuries prior to eruption by the arrival of high-flux magma pulses from deeper in the sub-caldera reservoir. Unrest in 2011–2012 involved intrusion of two magma pulses at about 4 km depth, suggesting that the behaviour of the modern-day volcano is similar to the behaviour of the volcano prior to Plinian eruptions. Emerging understanding of Santorini’s plumbing system will enable better risk mitigation at this highly hazardous volcano.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Santorini Volcano and its Plumbing System Read More »

The Christiana–Santorini–Kolumbo Volcanic Field

The Christiana–Santorini–Kolumbo volcanic field in the South Aegean Sea (Greece) is one of the most important in Europe, having produced more than 100 explosive eruptions in the last 400,000 years. Its volcanic centers include the extinct Christiana Volcano and associated seamounts, Santorini caldera with its intracaldera Kameni Volcano, Kolumbo Volcano, and 24 other submarine cones of the Kolumbo chain. Earthquakes, volcanic eruptions, submarine mass wasting, neotectonics and gas releases from these centers pose significant geohazards to human populations and infrastructures of the Eastern Mediterranean region. Defining the geological processes and structures that contribute to these geohazards will provide an important framework to guide future monitoring and research activities aimed at hazard mitigation.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Christiana–Santorini–Kolumbo Volcanic Field Read More »

Scroll to Top