Thematic Articles

What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites

Hypabyssal kimberlites are subvolcanic intrusive rocks crystallised from mantle-derived magmas poor in SiO2 and rich in CO2 and H2O. They are complex, hybrid rocks containing significant amounts of mantle-derived fragments, primarily olivine with rare diamonds, set in a matrix of essentially magmatic origin. Unambiguous identification of kimberlites requires careful petrographic examination combined with mineral compositional analyses. Melt inclusion studies have shown that kimberlite melts contain higher alkali concentrations than previously thought but have not clarified the ultimate origin of these melts. Because of the hybrid nature of kimberlites and their common hydrothermal alteration by fluids of controversial origin (magmatic and/or crustal), the composition of primary kimberlite melts remains unknown.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites Read More »

Kimberlites: From Deep Earth to Diamond Mines

Kimberlites are rare, enigmatic, low-volume igneous rocks. They are highly enriched in magnesium, volatiles (CO2 and H2O) and incompatible trace elements and are thought to be the most deeply derived (>150 km) magmatic rocks on Earth. Kimberlites occur in ancient and thick continental lithosphere, forming intrusive sheets and composite pipes, commonly in clusters. Despite their rarity, kimberlites have attracted considerable attention because they entrain not only abundant mantle fragments but also diamonds, which can provide a uniquely rich picture of the deep Earth. This issue summarises current thinking on kimberlite petrology, geochemistry, and volcanology and outlines the outstanding questions on the genesis of kimberlites and associated diamond mines.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Kimberlites: From Deep Earth to Diamond Mines Read More »

Hydrogen, Hydrocarbons, and Habitability Across the Solar System

The ingredients to make an environment habitable (e.g., liquid water, chemical disequilibria, and organic molecules) are found throughout the solar system. Liquid water has existed transiently on some bodies and persistently as oceans on others. Molecular hydrogen occurs in a plume on Saturn’s moon Enceladus. It can drive the reduction of CO2 to release energy. Methane has been observed in many places: from the dusty plains of Mars, to the great lakes of the Saturnian moon Titan, to the glacial wonderland that is Pluto. Organic molecules are common where volatile elements and reducing conditions prevail: these organic molecules can have diverse origins. Future space missions will attempt to illuminate the “organic solar system” and the role played by possible extraterrestrial life.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Hydrogen, Hydrocarbons, and Habitability Across the Solar System Read More »

Abiotic Hydrogen and Methane: Fuels for Life

Geologically produced (abiotic) molecular hydrogen and methane could be widely utilized by microbial communities in surface and subsurface environments. These microbial communities can, therefore, have a potentially significant impact on the net emissions of H2 and CH4 to Earth’s ocean and atmosphere. Abiotic H2 and CH4 could enable microbial communities to exist in rock-hosted environments and hydrothermal systems with little or no input from photosynthetic carbon fixation, making these communities potential analogs for the earliest metabolisms on Earth (or other planetary bodies). The possible dependence of rock-hosted ecosystems on H2 and CH4 should factor into current and future plans for engineering the subsurface for storage of these compounds as energy fuels.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Abiotic Hydrogen and Methane: Fuels for Life Read More »

The Behavior of H2 in Aqueous Fluids under High Temperature and Pressure

The presence of H2 and H2O in planetary interiors prompts the need for fundamental studies on these compounds under corresponding conditions. Here, we summarize data on H2 properties in aqueous systems under conditions of high temperature and pressure. We explain how to measure important H2 fugacities in hydrothermal systems. We present available experimental data and thermodynamic models for H2 solubility and vapor–liquid partitioning under hydrothermal conditions. In addition, we introduce the fascinating world of H2–H2O clathrate hydrates under extreme temperatures and pressures. The properties of the H2–H2O system are well established below the critical point of water (374 °C and 22.06 MPa), but far less is known under higher temperatures and pressures, or the effect of salt.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Behavior of H2 in Aqueous Fluids under High Temperature and Pressure Read More »

Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere

Accumulation of molecular hydrogen in geologic systems can create conditions energetically favorable to transform inorganic carbon into methane and other organic compounds. Although hydrocarbons with a potentially abiotic origin have been proposed to form in a number of crustal settings, the ubiquitous presence of organic compounds derived from biological organic matter presents a challenge for unambiguously identifying abiotic organic molecules. In recent years, extensive analysis of methane and other organics in diverse geologic fluids, combined with novel isotope analyses and laboratory simulations, have, however, yielded insights into the distribution of specific abiotic organic molecules in Earth’s lithosphere and the likely conditions and pathways under which they form.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere Read More »

Abiotic Sources of Molecular Hydrogen on Earth

The capacity for molecular hydrogen (H2) to hydrogenate oxygen and carbon is critical to the origin of life and represents the basis for all known life-forms. Major sources of H2 that strictly involve nonbiological processes and inorganic reactants include (1) the reduction of water during the oxidation of iron in minerals, (2) water splitting due to radioactive decay, (3) degassing of magma at low pressures, and (4) the reaction of water with surface radicals during mechanical breaking of silicate rocks. None of these processes seem to significantly affect the current global atmospheric budget of H2, yet there is substantial H2 cycling in a wide range of Earth’s subsurface environments, with multifaceted implications for microbial ecosystems.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Abiotic Sources of Molecular Hydrogen on Earth Read More »

Hydrogen and Abiotic Hydrocarbons: Molecules that Change the World

Molecular hydrogen (H2), methane, and hydrocarbons with an apparent abiotic origin have been observed in a variety of geologic settings, including serpentinized ultramafic rocks, hydrothermal fluids, and deep fractures within ancient cratons. Molecular hydrogen is also observed in vapor plumes emanating from the icy crust of Saturn’s moon Enceladus, and methane has been detected in the atmosphere of Mars. Geologic production of these compounds has been the subject of increasing scientific attention due to their use by chemosynthetic biological communities. These compounds are also of interest as possible energy resources. This issue summarizes the geological sources of abiotic H2 and hydrocarbons on Earth and elsewhere and examines their impact on microbial life and energy resources.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Hydrogen and Abiotic Hydrocarbons: Molecules that Change the World Read More »

New Trends in Raman Spectroscopy: From High-Resolution Geochemistry to Planetary Exploration

This article reviews nonconventional Raman spectroscopy techniques and discusses present and future applications of these techniques in the Earth and planetary sciences. Time-resolved spectroscopy opens new ways to limit or exploit luminescence effects, whereas techniques based on coherent anti-Stokes Raman scattering (CARS) or surface-enhanced Raman spectroscopy (SERS) allow the Raman signal to be considerably enhanced even down to very high spatial resolutions. In addition, compact portable Raman spectrometers are now routinely used out of the laboratory and are even integrated to two rovers going to Mars in the near future.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

New Trends in Raman Spectroscopy: From High-Resolution Geochemistry to Planetary Exploration Read More »

Geoscience Meets Biology: Raman Spectroscopy in Geobiology and Biomineralization

Raman spectroscopy is widely applied in metamorphic petrology and offers many opportunities for geological and tectonic research. Minimal sample preparation preserves sample integrity and microtextural information, while use with confocal microscopes allows spatial resolution down to the micrometer level. Raman spectroscopy clearly distinguishes mineral polymorphs, providing crucial constraints on metamorphic conditions, particularly ultrahigh-pressure conditions. Raman spectroscopy can also be used to monitor the structure of carbonaceous material in metamorphic rocks. Changes in structure are temperature-sensitive, so Raman spectroscopy of carbonaceous material is widely used for thermometry. Raman spectroscopy can also detect and quantify strain in micro-inclusions, offering new barometers that can be applied to understand metamorphic and tectonic processes without any assumptions about chemical equilibrium.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Geoscience Meets Biology: Raman Spectroscopy in Geobiology and Biomineralization Read More »

Scroll to Top