Thematic Articles

Biogeochemical Controls on the Redox Evolution of Earth’s Oceans and Atmosphere

Download Article (PDF) June 2020 Issue Table of Contents The redox state of Earth’s atmosphere has undergone a dramatic shift over geologic time from reducing to strongly oxidizing, and this shift has been coupled with changes in ocean redox structure and the size and activity of Earth’s biosphere. Delineating this evolutionary trajectory remains a major…

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Biogeochemical Controls on the Redox Evolution of Earth’s Oceans and Atmosphere Read More »

Electron Transfer Drives Metal Cycling in the Critical Zone

Electron transfer in the critical zone is driven by biotic and abiotic mechanisms and controls the fate of inorganic and organic contaminants, whether redox-sensitive or not. In these environments, Fe- and Mn-bearing minerals, as well as organic matter, are key compounds. They interact with each other and constitute important electron shuttles. As a result, not only their solubility but also their structure controls the mobility of many essential and toxic elements. In addition, microorganisms that form hot spots and are widespread in environmental systems are also primordial players in electron transfer processes by acting as a catalyst between an electron donor and an acceptor, and through their contaminant detoxification metabolism.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Electron Transfer Drives Metal Cycling in the Critical Zone Read More »

Volcanic and Geothermal Redox Engines

The redox (reduction–oxidation) potential is an essential variable that controls the chemical reactions of fluids in magmatic and associated geothermal systems. However, the evolution of the redox potential is difficult to trace from a magma’s source at depth to the surface. The key is knowing that electron transfer is the twin face of the acid–base exchanges that drive charge transfer in the many reactions that occur in multiphase and chemically complex systems. The deduced redox reactivity can reveal many features about the evolution of a system’s composition and the external factors that control it. As such, redox potential analysis is an important geochemical tool by which to monitor volcanoes and to explore geothermal systems.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Volcanic and Geothermal Redox Engines Read More »

Magmas are the Largest Repositories and Carriers of Earth’s Redox Processes

Magma is the most important chemical transport agent throughout our planet. This paper provides an overview of the interplay between magma redox, major element chemistry, and crystal and volatile content, and of the influence of redox on the factors that drive igneous system dynamics. Given the almost infinite combinations of temperature, pressure, and chemical compositions relevant to igneous petrology, we focus on the concepts and methods that redox geochemistry provides to understand magma formation, ascent, evolution and crystallization. Particular attention is paid to the strong and complex interplay between melt structure and chemistry, and to the influence that redox conditions have on melt properties, crystallization mechanisms and the solubility of volatile components.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Magmas are the Largest Repositories and Carriers of Earth’s Redox Processes Read More »

Redox Processes in Early Earth Accretion and in Terrestrial Bodies

The Earth is a unique rocky planet with liquid water at the surface and an oxygen-rich atmosphere, consequences of its particular accretion history. The earliest accreting bodies were small and could be either differentiated and undifferentiated; later larger bodies had formed cores and mantles with distinct properties. In addition, there may have been an overall trend of early reduced and later oxidized material accreting to form the Earth. This paper provides an overview—based on natural materials in our Earthbound sample collections, experimental studies on those samples, and calculations and numerical simulations of differentiation processes—of planetary accretion, core–mantle equilibration, mantle redox processes, and redox variations in Earth, Mars, and other terrestrial bodies.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Redox Processes in Early Earth Accretion and in Terrestrial Bodies Read More »

The Redox Boundaries of Earth’s Interior

The interior of the Earth is an important reservoir for elements that are chemically bound in minerals, melts, and gases. Analyses of the proportions of redox-sensitive elements in ancient and contemporary natural rocks provide information on the temporal redox evolution of our planet. Natural inclusions trapped in diamonds, xenoliths, and erupted magmas provide unique windows into the redox conditions of the deep Earth, and reveal evidence for heterogeneities in the mantle’s oxidation state. By examining the natural rock record, we assess how redox boundaries in the deep Earth have controlled elemental cycling and what effects these boundaries have had on the temporal and chemical evolution of oxygen fugacity in the Earth’s interior and atmosphere.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Redox Boundaries of Earth’s Interior Read More »

Earth’s Electrodes

The oxidation–reduction (‘redox’) state is an important intensive property of any geologic system and is typically measured (and reported) as either the redox potential (Eh) or the oxygen fugacity (fO2). These two concepts cover the whole spectrum of geologic systems: from low-temperature aqueous and sedimentary systems to high-temperature rock-forming environments. The redox state determines the speciation of a fluid phase and exercises fundamental controls on phase relations and geochemical evolution. Here, we review the concepts that underpin the redox state and outline a framework for describing and quantifying the concept of the oxidation state.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Earth’s Electrodes Read More »

From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium

Lithium is everywhere. If you have a mobile phone or a laptop, you are taking advantage of one of the technological revolutions of the last 30 years: lithium-ion batteries. Lithium has long been used in pharmaceuticals and in the manufacture of grease, ceramics, and glass, but has now become the symbolic element of the current energy revolution. Lithium is ubiquitous in our society and plays a role in our lives that could not have been previously imagined. From its mining to its applications in advanced battery materials and pharmaceuticals, welcome to the lithium decade. Electric mobility will become the new normal.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium Read More »

Classification and Characteristics of Natural Lithium Resources

There are three broad types of economic lithium deposit: 1) peralkaline and peraluminous pegmatite deposits and their associated metasomatic rocks; 2) Li-rich hectorite clays derived from volcanic deposits; 3) salar evaporites and geothermal deposits. Spodumene-bearing pegmatites are the most important and easily exploitable Li deposits, typically containing 0.5 Mt Li. Salar deposits hold the largest Li reserves, can reach up to 7 Mt Li, but are more difficult to exploit. Allowing for recycling, the current predicted demand up to the year 2100 is 20 Mt Li; world resources are currently estimated at more than 62 Mt Li. Thus, abundant resources exist, and no long-term shortage is predicted.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Classification and Characteristics of Natural Lithium Resources Read More »

Lithium and Lithium Isotopes in Earth’s Surface Cycles

Lithium and its isotopes can provide information on continental silicate weathering, which is the primary natural drawdown process of atmospheric CO2 and a major control on climate. Lithium isotopes themselves can help our understanding of weathering, via globally important processes such as clay formation and cation retention. Both these processes occur as part of weathering in modern surface environments, such as rivers, soil pore waters, and groundwaters, but Li isotopes can also be used to track weathering changes across major climate-change events. Lithium isotope evidence from several past climatic warming and cooling episodes shows that weathering processes respond rapidly to changes in temperature, meaning that weathering is capable of bringing climate back under control within a few tens of thousands of years.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Lithium and Lithium Isotopes in Earth’s Surface Cycles Read More »