Thematic Articles

Nanoscale Structure and Dynamics in Geochemical Systems

Neutron scattering is a powerful tool to elucidate the structure and dynamics of systems that are important to geochemists, including ion association in complex aqueous solutions, solvent-exchange reactions at mineral–water interfaces, and reaction and transport of fluids in nanoporous materials. This article focusses on three techniques: neutron diffraction, which can reveal the atomic-level structure of aqueous solutions and solids; quasi-elastic neutron scattering, which measures the diffusional dynamics at mineral–water interfaces; and small-angle neutron scattering, which can show how properties of nanoporous systems change during gas, liquid, and solute imbibition and reaction. The usefulness and applicability of the experimental results are extended by rigorous comparison to computational simulations.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Nanoscale Structure and Dynamics in Geochemical Systems Read More »

Where is the Hydrogen?

How is hydrogen distributed among minerals and how is it bonded in their crystal structures? These are important questions, because the amount of hydrogen and the bonding configuration of hydrogen in crystalline materials governs many of that material’s properties: its thermal and compressional behavior, P–T phase stability, rheology, and electrical conductivity. A reliable reconstruction of the Earth’s interior, or the prediction of mineral transformations in complex industrial processes, must account for these parameters. Neutron diffraction can locate hydrogen sites in mineral structures, reveal any static or dynamic hydrogen disorder, help define the libration regime of hydrogen, and elucidate hydrogen-bonding configurations. Thus, that most elusive element for X-ray probes is perfectly detectable using neutrons.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Where is the Hydrogen? Read More »

Neutrons “101” – A Primer for Earth Scientists

The fundamental properties of the neutron make it a powerful tool for Earth science investigations because neutrons provide information that cannot be obtained by any other research method. This is because neutrons are magnetically sensitive, nondestructive, and sensitive to the lighter elements, such as hydrogen. They provide a unique, nondestructive method for obtaining information ranging from Ångstrom-scale atomic structures (and related motions) to micron-scale material strain, stress, and texture, and even up to meso-scale porous matrices and defects in materials and functional components. In this article, we introduce neutrons and their unique properties, neutron production and sources, and provide an overview of the different types of neutron methods applicable to the Earth sciences.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Neutrons “101” – A Primer for Earth Scientists Read More »

High Carbonate Alkalinity Lakes on Mars and their Potential Role in an Origin of Life Beyond Earth

The exploration of Mars has revealed that its ancient surface hosted lakes with a dazzling array of chemical and physical conditions and processes. The potential habitability of surface waters has driven studies aimed at understanding whether or not Mars once hosted life. High levels of atmospheric carbon dioxide are probable on early Mars, which means that lakes derived from weathering fluids could have contained substantial carbonate alkalinity. Recent studies show that lakes with high carbonate alkalinity are able to concentrate the phosphate and cyanide that are critical for molecular synthesis in the origin of life. While evidence for carbonate-rich Martian lakes remains limited, NASA’s Perseverance rover may reveal clues about the past existence of such waters in Jezero Crater.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

High Carbonate Alkalinity Lakes on Mars and their Potential Role in an Origin of Life Beyond Earth Read More »

The Vigor, Futility, and Application of Microbial Element Cycles in Alkaline Soda Lakes

Alkaline soda lakes are known as some of nature’s most biologically productive ecosystems. Vigorous production (photosynthetic conversion of inorganic carbon into biomass) is countered by incremental biomass degradation, which fuels and feeds a diverse microbial community. Learn here about key adaptations that help microbes survive and thrive in the extreme conditions of alkaline soda lakes. Dive into the interconnected microbial element cycles of alkaline soda lakes and discover how the geochemistry of these environments presents microbes with unique challenges and opportunities. Throughout this article, explore how the microbial inhabitants of alkaline soda lakes have been harnessed in biotechnological applications, including the production of protein-rich food, detergent enzymes, and the purification of biogas.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Vigor, Futility, and Application of Microbial Element Cycles in Alkaline Soda Lakes Read More »

Making Salt from Water: The Unique Mineralogy of Alkaline Lakes

Alkaline lakes have some of the most unique and diverse known mineral assemblages as a result of their very high pH and dissolved inorganic carbon concentrations. In these closed-basin systems, aqueous geochemistry and mineralogy are intimately linked, whereby the removal of elements through mineral precipitation controls the lake water geochemistry. The resulting extreme water chemistry of alkaline lakes produces minerals that are rare in other environments, including low-temperature minerals that record valuable environmental information and that are commonly extracted as mineral resources. Alkaline lakes are also excellent environments to study various processes in mineral crystallization, growth, and transformation, including the formation of metastable phases, precipitation after extreme supersaturation, co-precipitation of minerals, and the influence of dynamic conditions.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Making Salt from Water: The Unique Mineralogy of Alkaline Lakes Read More »

How to Make an Alkaline Lake: Fifty Years of Chemical Divides

Of all the surface environments on our planet, alkaline lakes are among the most distinctive and significant in terms of their biogeochemistry, climatic sensitivity, and associated mineral deposits. But how does the Earth produce alkaline lakes? Fifty years ago, Lawrence Hardie and Hans Eugster hypothesised that the bewildering complexity of non-marine evaporites could be explained by common successions of mineral precipitation events, or chemical divides. Since that time, the chemical divide concept has provided Earth scientists with an enduring framework within which to integrate new advances in mineral–water equilibria and kinetics, sedimentology, and paleoclimatology. These developments are painting an increasingly detailed picture of how alkaline waters form and interact with magmatic and atmospheric CO2, now and in the distant past.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

How to Make an Alkaline Lake: Fifty Years of Chemical Divides Read More »

Dry, Salty, and Habitable: The Science of Alkaline Lakes

Alkaline lakes are incredibly dynamic, unique, and fascinating biogeochemical environments that have remained distinctive features of Earth’s evolving surface over much of its history. Understanding these evaporative surface waters, their exceptionally productive ecosystems, and their rare sedimentary deposits requires an inherently interdisciplinary approach at the intersection of hydrology, geology, and biology. The discipline-spanning articles in this issue evaluate the diverse characteristics that make these dry, salty, and habitable environments so valuable in unraveling the history and evolution of Earth’s surface, and in following the arc of habitability on ancient Mars. Here, in this introductory article, we summarize the characteristics and importance of alkaline lakes with the hope of attracting you, too, to join in our fascination with them.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Dry, Salty, and Habitable: The Science of Alkaline Lakes Read More »

Life’s Origins and the Search for life on Rocky Exoplanets

The study of the origin(s) of life on Earth and the search for life on other planets are closely linked. Prebiotic chemical scenarios can help prioritize target planets for the search for life (as we know it) and can provide informative prior probabilities to help us assess the likelihood that particular spectroscopic features are evidence of life. The prerequisites for origins scenarios themselves predict characteristic spectral signatures. The interplay between origins research and the search for extraterrestrial life starts with laboratory work to guide exploration within our own Solar System, which will then inform future exoplanet observations and laboratory research. Exoplanet research will, in turn, provide statistical context to conclusions about the nature and origins of life.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Life’s Origins and the Search for life on Rocky Exoplanets Read More »

The Air Over There: Exploring Exoplanet Atmospheres

The atmospheric composition for a rocky exoplanet will depend strongly on the planet’s bulk composition and orbital position. Nontraditional gases may be present in the atmospheres of exceptionally hot planets. Atmospheres of more clement planets will depend on the abundance of volatiles acquired during planet formation and atmospheric removal processes, including escape, condensation, and reaction with the surface. To date, observations of exoplanet atmospheres have focused on giant planets, but future space- and ground-based observatories will revolutionize the precision and spectral resolution with which we can probe an exoplanet’s atmosphere. This article consolidates lessons learned from the study of giant planet atmospheres, and points to the observations and challenges on the horizon for terrestrial planets.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Air Over There: Exploring Exoplanet Atmospheres Read More »

Scroll to Top