Magmas are erupted from a wide range of depths. Olivine compositions, for example, indicate magma storage in the lower crust and upper mantle, while clinopyroxene and amphibole record middle to upper crust storage. Pre-eruptive magmas also often cool by 100–300 °C, frequently at middle–upper crust depths, indicating clogged, ephemeral volcanic pathways. These coolings imply that mafic recharge is not a sufficient cause for eruption and that crystallization-induced vapor saturation is a more proximal eruption trigger. But an improved understanding of eruption mechanisms require precise identifications of what are herein termed “ultimate”, “proximal,” and “immediate” causes of eruption.
This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.