free article

Reactive Transport Modeling of Microbial Dynamics

Reactive transport modeling of microbially mediated processes has contributed significantly to an improved understanding of elemental cycling in Earth’s near-surface environments. We describe key characteristics of microbial reactive transport models, recent advances in modeling approaches, and the application of such models to terrestrial and marine environmental problems. We introduce relevant case studies and discuss ways to integrate omics data (e.g., genomics, proteomics, metabolomics) that can inform and validate microbial reactive transport models, thereby improving our ability to address some of the grand challenges in a changing world.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport Modeling of Microbial Dynamics Read More »

Reactive Transport of Stable Isotopes

Isotopes have a rich history as tracers of biogeochemical processes, but they are commonly interpreted using distillation models that lump multiple compounding effects, including advection, diffusion, and complex chemical transformations. Today, as our ability to measure small differences in relative mass continues to improve, a new generation of process-based models are being developed that explicitly track individual isotopes across an increasingly diverse range of environments. Advances in isotopic reactive transport models are now yielding new insight into fundamental questions across the Earth sciences, including the relationships between experiments and natural systems and the conditions under which isotopes record past environments.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport of Stable Isotopes Read More »

Reactive Transport Models of Weathering

Continental rocks chemically weather when surficial waters and gases interact with the minerals and organisms that inhabit Earth’s critical zone. To understand and quantify this process, researchers use reactive transport models to track the kinetics and thermodynamics of weathering reactions and the transport of products and reactants. These models are powerful tools to explore how weathering sculpts the Earth’s surface from the scale of mineral grains to watersheds, and across temporal scales from seconds to millions of years. Reactive transport model simulations are now a vital tool for elucidating the complex links between climate, rock ­weathering, and biota.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport Models of Weathering Read More »

Reactive Transport Modeling: A Key Performance Assessment Tool for the Geologic Disposal of Nuclear Waste

The disposal of spent nuclear fuel and high-level radioactive waste in the subsurface represents one of the greatest challenges for the geosciences. Most disposal strategies rely on a multiple barrier system, consisting of both natural and engineered materials, to prevent or delay the contact of groundwater with the waste and radionuclide release to the environment. Reactive transport models have been central to understanding and assessing how thermal, hydrological, and geochemical processes are coupled in these containment barriers, which are expected to experience a range of temperatures and geochemical conditions, yet, must maintain their integrity for millions of years.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Reactive Transport Modeling: A Key Performance Assessment Tool for the Geologic Disposal of Nuclear Waste Read More »

The Role of Reactive Transport Modeling in Geologic Carbon Storage

The engineered storage of CO2 in Earth’s subsurface provides one of the most promising means of reducing net greenhouse gas emissions. Paramount to the success of this method is ensuring that CO2 injected into the subsurface is securely stored. Reactive transport models can be used to answer the key question regarding CO2 storage, “Will the injected CO2 be secure, and over what timescale?” Here, we explore examples of how reactive transport models have been used to simulate the range of geochemical and hydrologic processes that will take place over thousands of years and across many spatial scales to answer that key question.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Role of Reactive Transport Modeling in Geologic Carbon Storage Read More »

Using Reactive Transport Models to Quantify and Predict Groundwater Quality

The hydrochemical composition of most groundwater systems, whether pristine or affected by anthropogenic activities, evolves as a result of complex interactions between flow, solute transport and biogeochemical processes. An in-depth analysis of these processes and their interactions is essential for deciphering what controls groundwater quality. Reactive transport modeling has emerged as an invaluable tool for distilling complex systems into their salient components. Based on experimental data, reactive transport models have been successfully used in the rigorous, process-based quantification of coupled processes at bench and field scales. We illustrate how reactive transport modeling can aid in identifying and quantifying controls over groundwater quality.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Using Reactive Transport Models to Quantify and Predict Groundwater Quality Read More »

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models

Beneath our feet is a fascinating world of flowing water, cosmopolitan microbes, and complex mineral assemblages. Yet we see none of it from above. Our quest to investigate these complex subsurface interactions has led to the development of reactive transport models. These are computer algorithms that allow us to explore, in a virtual way, the natural dynamics of Earth’s systems and our anthropogenic impact on those systems. Here, we explain the concepts behind reactive transport models—which include the transport of aqueous species and the descriptions of biogeochemical reactions involving solutes, surfaces and microorganisms—and introduce to reactive transport applications in terrestrial and marine environments.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Tracking Diverse Minerals, Hungry Organisms, and Dangerous Contaminants Using Reactive Transport Models Read More »

Interpreting the Carbon Isotope Record of Mass Extinctions

Mass extinctions are global-scale environmental crises marked by the loss of numerous species from all habitats. They often coincide with rapid changes in the stable carbon isotope ratios (13C/12C) recorded in sedimentary carbonate and organic matter, ratios which can indicate substantial inputs to the surface carbon reservoirs and/or changes in the cycling of carbon. Models to explain these changes have provided much fuel for debate on the causes and consequences of mass extinctions. For example, the escape of methane from gas hydrate deposits or the emission of huge volumes of gaseous carbon from large-scale volcanic systems, known as large igneous provinces, may have been responsible for decreases of 13C/12C in sedimentary deposits. In this article, we discuss the challenges in distinguishing between these, and other, alternatives.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Interpreting the Carbon Isotope Record of Mass Extinctions Read More »

Earth’s Outgassing and Climatic Transitions: The Slow Burn Towards Environmental “Catastrophes”?

On multimillion-year timescales, outgassing from the Earth’s interior provides the principal source of CO2 to the ocean–atmosphere system, which plays a fundamental role in shaping the Earth’s baseline climate. Fluctuations in global outgassing have been linked to icehouse–greenhouse transitions, although uncertainties surround paleo-outgassing fluxes. Here, we discuss how volcanic outgassing and the carbon cycle have evolved in concert with changes in plate tectonics and biotic evolution. We describe hypotheses of driving mechanisms for the Paleozoic icehouse–greenhouse climates and explore how climatic transitions may have influenced past biotic crises and, in particular, how variable outgassing rates established the backdrop for carbon cycle perturbations to instigate prominent mass extinction events.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Earth’s Outgassing and Climatic Transitions: The Slow Burn Towards Environmental “Catastrophes”? Read More »

Deep Carbon and the Life Cycle of Large Igneous Provinces

Carbon is central to the formation and environmental impact of large igneous provinces (LIPs). These vast magmatic events occur over geologically short timescales and include voluminous flood basalts, along with silicic and low-volume alkaline magmas. Surface outgassing of CO2 from flood basalts may average up to 3,000 Mt per year during LIP emplacement and is subsidized by fractionating magmas deep in the crust. The large quantities of carbon mobilized in LIPs may be sourced from the convecting mantle, lithospheric mantle and crust. The relative significance of each potential carbon source is poorly known and probably varies between LIPs. Because LIPs draw on mantle reservoirs typically untapped during plate boundary magmatism, they are integral to Earth’s long-term carbon cycle.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Deep Carbon and the Life Cycle of Large Igneous Provinces Read More »

Scroll to Top