free article

The Influence of Large Bolide Impacts on Earth’s Carbon Cycle

Human society’s rapid release of vast quantities of CO2 into the atmosphere is a significant planetary experiment. An obvious natural process capable of similar emissions over geologically short time spans are very large bolide impacts. When striking a carbon-rich target, bolides significantly, and potentially catastrophically, disrupt the global biogeochemical carbon cycle. Independent factors, such as sulfur-rich targets, redox state of the oceans or encountering ecosystems already close to a tipping point, dictated the magnitude of further consequences and determined which large bolide strikes shaped Earth’s evolution. On the early Earth, where carbon-rich sedimentary targets were rare, impacts may not have been purely destructive. Instead, enclosed subaqueous impact structures may have contributed to initiating Earth’s unique carbon cycle.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

The Influence of Large Bolide Impacts on Earth’s Carbon Cycle Read More »

On the Origin(s) and Evolution of Earth’s Carbon

The isotopic “flavor” of Earth’s major volatiles, including carbon, can be compared to the known reservoirs of volatiles in the solar system and so determine the source of Earth’s carbon. This requires knowing Earth’s bulk carbon isotope value, which is not straightforward to determine. During Earth’s differentiation, carbon was partitioned into the core, mantle, crust, and atmosphere. Therefore, although carbon is omnipresent within the Earth system, scientists have yet to determine its distribution and relative abundances. This article addresses what we know of the processes involved in the formation of Earth’s carbon reservoirs, and, by deduction, what we know about the possible origins of Earth’s carbon.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

On the Origin(s) and Evolution of Earth’s Carbon Read More »

Earth Catastrophes and Their Impact on the Carbon Cycle

Carbon is one of the most important elements on Earth. It is the basis of life, it is stored and mobilized throughout the Earth from core to crust and it is the basis of the energy sources that are vital to human civilization. This issue will focus on the origins of carbon on Earth, the roles played by large-scale catastrophic carbon perturbations in mass extinctions, the movement and distribution of carbon in large igneous provinces, and the role carbon plays in icehouse–greenhouse climate transitions in deep time. Present-day carbon fluxes on Earth are changing rapidly, and it is of utmost importance that scientists understand Earth’s carbon cycle to secure a sustainable future.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Earth Catastrophes and Their Impact on the Carbon Cycle Read More »

Formation of Rare Earth Deposits in Carbonatites

Carbonatites and related rocks are the premier source for light rare earth element (LREE) deposits. Here, we outline an ore formation model for LREE-mineralised carbonatites, reconciling field and petrological observations with recent experimental and isotopic advances. The LREEs can strongly partition to carbonatite melts, which are either directly mantle-derived or immiscible from silicate melts. As carbonatite melts evolve, alkalis and LREEs concentrate in the residual melt due to their incompatibility in early crystallising minerals. In most carbonatites, additional fractionation of calcite or ferroan dolomite leads to evolution of the residual liquid into a mobile alkaline “brine-melt” from which primary alkali REE carbonates can form. These primary carbonates are rarely preserved owing to dissolution by later fluids, and are replaced in-situ by monazite and alkali-free REE-(fluor)carbonates.

This content is for Registered members only. To subscribe, please
join one of our participating societies or contact the Editorial Team.

Login

Formation of Rare Earth Deposits in Carbonatites Read More »

Scroll to Top